Skip to main content

Isolation of Synaptosomes from Archived Brain Tissues

  • Protocol
  • First Online:
Current Laboratory Methods in Neuroscience Research

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Synapses in the central nervous system serve as communication points between neurons and are critical regulators of neurotransmission and synaptic plasticity, the latter refers to a process of experience dependent changes in synaptic connectivity, where neurons undergo extensive sculpting and rewiring. Research on understanding the changes at the level of the synapse holds great promise into understanding the biological basis of many neurodegenerative and neuropsychiatric disorders in which brain wiring goes awry. One such approach to understand the changes occurring at the synapse is by isolating synaptosomes. Here, we describe the isolation of synaptosomes from archived human brain tissue using subcellular fractionation, which when combined to high-throughput “omics”-based approaches could yield vital clues into understanding the underlying bases of neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bayes A, Grant SG (2009) Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat Rev Neurosci 10:635–646

    Article  CAS  PubMed  Google Scholar 

  • Booth RF, Clark JB (1978) A rapid method for the preparation of relatively pure metabolically competent synaptosomes from rat brain. Biochem J 176:365–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd-Kimball D, Castegna A, Sultana R, Poon HF, Petroze R, Lynn BC, Klein JB, Butterfield DA (2005) Proteomic identification of proteins oxidized by Abeta(1–42) in synaptosomes: implications for Alzheimer’s disease. Brain Res 1044:206–215

    Article  CAS  PubMed  Google Scholar 

  • Bramham CR, Wells DG (2007) Dendritic mRNA: transport, translation and function. Nat Rev Neurosci 8:776–789

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekar V, Dreyer JL (2009) microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Mol Cell Neurosci 42:350–362

    Article  CAS  PubMed  Google Scholar 

  • DeGiorgis JA, Jaffe H, Moreira JE, Carlotti CG Jr, Leite JP, Pant HC, Dosemeci A (2005) Phosphoproteomic analysis of synaptosomes from human cerebral cortex. J Proteome Res 4:306–315

    Article  CAS  PubMed  Google Scholar 

  • Filiou MD, Bisle B, Reckow S, Teplytska L, Maccarrone G, Turck CW (2010) Profiling of mouse synaptosome proteome and phosphoproteome by IEF. Electrophoresis 31:1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Gelman BB, Nguyen TP (2010) Synaptic proteins linked to HIV-1 infection and immunoproteasome induction: proteomic analysis of human synaptosomes. J Neuroimmune Pharmacol 5(1):92–102

    Article  PubMed  Google Scholar 

  • Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat 96:79–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  CAS  PubMed  Google Scholar 

  • Ji B, Zhang Z, Zhang M, Zhu H, Zhou K, Yang J, Li Y, Sun L, Feng G, Wang Y, He L, Wan C (2009) Differential expression profiling of the synaptosome proteome in a rat model of antipsychotic resistance. Brain Res 1295:170–178

    Article  CAS  PubMed  Google Scholar 

  • Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A 106:13052–13057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khudayberdiev S, Fiore R, Schratt G (2009) MicroRNA as modulators of neuronal responses. Commun Integr Biol 2:411–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SI, Voshol H, van Oostrum J, Hastings TG, Cascio M, Glucksman MJ (2004) Neuroproteomics: expression profiling of the brain’s proteomes in health and disease. Neurochem Res 29:1317–1331

    Article  CAS  PubMed  Google Scholar 

  • Konecna A, Heraud JE, Schoderboeck L, Raposo AA, Kiebler MA (2009) What are the roles of microRNAs at the mammalian synapse? Neurosci Lett 466:63–68

    Article  CAS  PubMed  Google Scholar 

  • Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK, Johnson JM, Sina JF, Fare TL, Sistare FD, Glaab WE (2009) Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem 55:1977–1983

    Article  CAS  PubMed  Google Scholar 

  • Liao L, McClatchy DB, Yates JR (2009) Shotgun proteomics in neuroscience. Neuron 63:12–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugli G, Torvik VI, Larson J, Smalheiser NR (2008) Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem 106:650–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClatchy DB, Yates JR, 3rd (2008) Stable isotope labeling of mammals (SILAM). CSH Protoc 2008:pdb prot4940

    Google Scholar 

  • McClatchy DB, Liao L, Park SK, Venable JD, Yates JR (2007) Quantification of the synaptosomal proteome of the rat cerebellum during post-natal development. Genome Res 17:1378–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy A, Delgado-Escueta AV (1984) Rapid preparation of synaptosomes from mammalian brain using nontoxic isoosmotic gradient material (Percoll). J Neurochem 43:1114–1123

    Article  CAS  PubMed  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  • Papagiannakopoulos T, Kosik KS (2009) MicroRNA-124: micromanager of neurogenesis. Cell Stem Cell 4:375–376

    Article  CAS  PubMed  Google Scholar 

  • Pocklington AJ, Armstrong JD, Grant SG (2006) Organization of brain complexity—synapse proteome form and function. Brief Funct Genomic Proteomic 5:66–73

    Article  CAS  PubMed  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  CAS  PubMed  Google Scholar 

  • Schratt G (2009) microRNAs at the synapse. Nat Rev Neurosci 10:842–849

    Article  CAS  PubMed  Google Scholar 

  • Schrimpf SP, Meskenaite V, Brunner E, Rutishauser D, Walther P, Eng J, Aebersold R, Sonderegger P (2005) Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry. Proteomics 5:2531–2541

    Article  CAS  PubMed  Google Scholar 

  • Siegel G, Saba R, Schratt G (2011) microRNAs in neurons: manifold regulatory roles at the synapse. Curr Opin Genet Dev 21(4):491–497

    Article  CAS  PubMed  Google Scholar 

  • Smalheiser NR (2008) Synaptic enrichment of microRNAs in adult mouse forebrain is related to structural features of their precursors. Biol Direct 3:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Smalheiser NR, Lugli G (2009) microRNA regulation of synaptic plasticity. Neuromolecular Med 11:133–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steward O, Schuman EM (2001) Protein synthesis at synaptic sites on dendrites. Annu Rev Neurosci 24:299–325

    Article  CAS  PubMed  Google Scholar 

  • Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  PubMed  Google Scholar 

  • Whittaker VP, Michaelson IA, Kirkland RJ (1964) The separation of synaptic vesicles from nerve-ending particles (‘synaptosomes’). Biochem J 90:293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams RW and Herrup K (1988) The control of neuron number. Ann Rev Neurosci 11:423–453

    Article  CAS  PubMed  Google Scholar 

  • Witzmann FA, Arnold RJ, Bai F, Hrncirova P, Kimpel MW, Mechref YS, McBride WJ, Novotny MV, Pedrick NM, Ringham HN, Simon JR (2005) A proteomic survey of rat cerebral cortical synaptosomes. Proteomics 5:2177–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Qiao H, Tian X (2011) Proteomic analysis of cerebral synaptosomes isolated from rat model of alzheimer”s disease. Indian J Exp Biol 49(2):118–124

    CAS  PubMed  Google Scholar 

  • Yelamanchili SV, Fox HS (2010) Defining larger roles for “tiny” RNA molecules: role of miRNAs in neurodegeneration research. J Neuroimmune Pharmacol 5(1):63–69

    Article  PubMed  Google Scholar 

  • Zhu H, Pan S, Gu S, Bradbury EM, Chen X (2002) Amino acid residue specific stable isotope labeling for quantitative proteomics. Rapid Commun Mass Spectrom 16:2115–2123

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurudutt Pendyala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pendyala, G., Buescher, J.L., Fox, H.S. (2014). Isolation of Synaptosomes from Archived Brain Tissues. In: Xiong, H., Gendelman, H.E. (eds) Current Laboratory Methods in Neuroscience Research. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8794-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8794-4_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8793-7

  • Online ISBN: 978-1-4614-8794-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics