Skip to main content
Log in

microRNA Regulation of Synaptic Plasticity

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

microRNAs play an important role in regulating synaptic plasticity. For example, microRNAs target (and are targeted by) plasticity mediators such as CREB, MECP2, and FMRP. As well, specific microRNAs have been shown to be expressed within dendrites, where they regulate protein translation of targets mediating dendritic growth. Components of the RISC machinery have been implicated in long-term memory in Drosophila. Here, we review evidence from studies of adult mouse forebrain supporting a model wherein synaptic stimulation (above a threshold value) increases calcium within dendritic spines, activates calpain, and activates and releases dicer from the postsynaptic density. Dicer processes local pre-miRs into mature miRNAs that are incorporated into RISC complexes within or near the dendritic spine, and that bind available target mRNAs in the vicinity. These may repress protein translation under resting conditions, yet permit a phasic burst of translation to occur transiently following subsequent synaptic activity. Loaded RISC complexes that are not bound to local mRNAs may serve to bind and trap mRNAs that are being transported down dendrites. Thus, locally formed microRNAs may mark the location of previously activated synapses and perform a type of synaptic tagging and capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abu-Elneel, K., Liu, T., Gazzaniga, F. S., Nishimura, Y., Wall, D. P., Geschwind, D. H., et al. (2008). Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics, 9, 153–161. doi:10.1007/s10048-008-0133-5.

    Article  PubMed  CAS  Google Scholar 

  • Asaki, C., Usuda, N., Nakazawa, A., Kametani, K., & Suzuki, T. (2003). Localization of translational components at the ultramicroscopic level at postsynaptic sites of the rat brain. Brain Research, 972, 168–176. doi:10.1016/S0006-8993(03)02523-X.

    Article  PubMed  CAS  Google Scholar 

  • Ashraf, S. I., McLoon, A. L., Sclarsic, S. M., & Kunes, S. (2006). Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell, 124, 191–205. doi:10.1016/j.cell.2005.12.017.

    Article  PubMed  CAS  Google Scholar 

  • Barco, A., Lopez de Armentia, M., & Alarcon, J. M. (2008). Synapse-specific stabilization of plasticity processes: The synaptic tagging and capture hypothesis revisited 10 years later. Neuroscience and Biobehavioral Reviews, 32, 831–851. doi:10.1016/j.neubiorev.2008.01.002.

    Article  PubMed  Google Scholar 

  • Beveridge, N. J., Tooney, P. A., Carroll, A. P., Gardiner, E., Bowden, N., Scott, R. J., et al. (2008). Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Human Molecular Genetics, 17, 1156–1168. doi:10.1093/hmg/ddn005.

    Article  PubMed  CAS  Google Scholar 

  • Bourne, J. N., Sorra, K. E., Hurlburt, J., & Harris, K. M. (2007). Polyribosomes are increased in spines of CA1 dendrites 2 h after the induction of LTP in mature rat hippocampal slices. Hippocampus, 2007(17), 1–4. doi:10.1002/hipo.20238.

    Article  Google Scholar 

  • Dincbas-Renqvist, V., Pépin, G., Rakonjac, M., Plante, I., Ouellet, D. L., Hermansson, A., et al. (2009). Human Dicer C-terminus functions as a 5-lipoxygenase binding domain. Biochimica et Biophysica Acta, 1789, 99–108.

    PubMed  CAS  Google Scholar 

  • Duman, R. S. (2002). Pathophysiology of depression: the concept of synaptic plasticity. European Psychiatry, 17(Suppl 3), 306–310. doi:10.1016/S0924-9338(02)00654-5.

    Article  PubMed  Google Scholar 

  • Eis, P. S., Tam, W., Sun, L., Chadburn, A., Li, Z., Gomez, M. F., et al. (2005). Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proceedings of the National Academy of Sciences of the United States of America, 102, 3627–3632. doi:10.1073/pnas.0500613102.

    Article  PubMed  CAS  Google Scholar 

  • Glanzer, J., Miyashiro, K. Y., Sul, J. Y., Barrett, L., Belt, B., Haydon, P., et al. (2005). RNA splicing capability of live neuronal dendrites. Proceedings of the National Academy of Sciences of the United States of America, 102, 16859–16864. doi:10.1073/pnas.0503783102.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, T., Olsen, L., Lindow, M., Jakobsen, K. D., Ullum, H., Jonsson, E., et al. (2007). Brain expressed microRNAs implicated in schizophrenia etiology. PLoS ONE, 2, e873. doi:10.1371/journal.pone.0000873.

    Article  PubMed  Google Scholar 

  • John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., & Marks, D. S. (2004). Human MicroRNA targets. PLoS Biology, 2, e363. doi:10.1371/journal.pbio.0020363.

    Article  PubMed  Google Scholar 

  • Khan, A. A., Betel, D., Sander, C., Leslie, C. S., & Marks, D. S. (2009). Nature Biotechnology, (in press).

  • Kim, V. N., Han, J., & Siomi, M. C. (2009). Biogenesis of small RNAs in animals. Nature Reviews. Molecular Cell Biology, 10, 126–139. doi:10.1038/nrm2632.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. H., Markham, J. A., Weiler, I. J., & Greenough, W. T. (2008). Aberrant early-phase ERK inactivation impedes neuronal function in fragile X syndrome. Proceedings of the National Academy of Sciences of the United States of America, 105, 4429–4434. doi:10.1073/pnas.0800257105.

    Article  PubMed  CAS  Google Scholar 

  • Kiyosawa, H., Mise, N., Iwase, S., Hayashizaki, Y., & Abe, K. (2005). Disclosing hidden transcripts: mouse natural sense–antisense transcripts tend to be poly(A) negative and nuclear localized. Genome Research, 15, 463–474. doi:10.1101/gr.3155905.

    Article  PubMed  CAS  Google Scholar 

  • Klein, M. E., Lioy, D. T., Ma, L., Impey, S., Mandel, G., & Goodman, R. H. (2007). Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nature Neuroscience, 10, 1513–1514. doi:10.1038/nn2010.

    Article  PubMed  CAS  Google Scholar 

  • Kosik, K. S. (2006). The neuronal microRNA system. Nature Reviews. Neuroscience, 7, 911–920. doi:10.1038/nrn2037.

    Article  PubMed  CAS  Google Scholar 

  • Kye, M. J., Liu, T., Levy, S. F., Xu, N. L., Groves, B. B., Bonneau, R., et al. (2007). Somatodendritic microRNAs identified by laser capture and multiplex RT-PCR. RNA, 13, 1224–1234. doi:10.1261/rna.480407.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Lin, L., & Jin, P. (2008). The microRNA pathway and fragile X mental retardation protein. Biochimica et Biophysica Acta, 1779, 702–705.

    PubMed  CAS  Google Scholar 

  • Lugli, G., Larson, J., Martone, M. E., Jones, Y., & Smalheiser, N. R. (2005). Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. Journal of Neurochemistry, 94, 896–905. doi:10.1111/j.1471-4159.2005.03224.x.

    Article  PubMed  CAS  Google Scholar 

  • Lugli, G., Torvik, V. I., Larson, J., & Smalheiser, N. R. (2008). Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. Journal of Neurochemistry, 106, 650–661. doi:10.1111/j.1471-4159.2008.05413.x.

    Article  PubMed  CAS  Google Scholar 

  • Martin, K. C., & Kosik, K. S. (2002). Synaptic tagging—Who’s it? Nature Reviews. Neuroscience, 3, 813–820. doi:10.1038/nrn942.

    Article  PubMed  CAS  Google Scholar 

  • Narayanan, U., Nalavadi, V., Nakamoto, M., Pallas, D. C., Ceman, S., Bassell, G. J., et al. (2007). FMRP phosphorylation reveals an immediate-early signaling pathway triggered by group I mGluR and mediated by PP2A. Journal of Neuroscience, 27, 14349–14357. doi:10.1523/JNEUROSCI.2969-07.2007.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, T., Kimura, M., Horii, T., Morita, S., Soejima, H., Kudo, S., et al. (2008). MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Human Molecular Genetics, 17, 1192–1199. doi:10.1093/hmg/ddn011.

    Article  PubMed  CAS  Google Scholar 

  • Omi, K., Tokunaga, K., & Hohjoh, H. (2004). Long-lasting RNAi activity in mammalian neurons. FEBS Letters, 558, 89–95. doi:10.1016/S0014-5793(04)00017-1.

    Article  PubMed  CAS  Google Scholar 

  • Park, S., Park, J. M., Kim, S., Kim, J. A., Shepherd, J. D., Smith-Hicks, C. L., et al. (2008). Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron, 59, 70–83. doi:10.1016/j.neuron.2008.05.023.

    Article  PubMed  CAS  Google Scholar 

  • Park, C. S., & Tang, S. J. (2008). Regulation of microRNA Expression by Induction of Bidirectional Synaptic Plasticity. Journal of Molecular Neuroscience, 38, 50–66. doi:10.1007/s12031-008-9158-3.

    Article  PubMed  Google Scholar 

  • Perkins, D. O., Jeffries, C. D., Jarskog, L. F., Thomson, J. M., Woods, K., Newman, M. A., et al. (2007). microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biology, 8, R27. doi:10.1186/gb-2007-8-2-r27.

    Article  PubMed  Google Scholar 

  • Provost, P., Dishart, D., Doucet, J., Frendewey, D., Samuelsson, B., & Radmark, O. (2002). Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO Journal, 21, 5864–5874. doi:10.1093/emboj/cdf578.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran, V., & Chen, X. (2008). Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science, 321, 1490–1492. doi:10.1126/science.1163728.

    Article  PubMed  CAS  Google Scholar 

  • Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439, 283–289. doi:10.1038/nature04367.

    Article  PubMed  CAS  Google Scholar 

  • Smalheiser, N. R. (2008a). Regulation of mammalian microRNA processing and function by cellular signaling and subcellular localization. Biochimica et Biophysica Acta, 1779, 678–681.

    PubMed  CAS  Google Scholar 

  • Smalheiser, N. R. (2008b). Synaptic enrichment of microRNAs in adult mouse forebrain is related to structural features of their precursors. Biology Direct, 3, 44. doi:10.1186/1745-6150-3-44.

    Article  PubMed  Google Scholar 

  • Smalheiser, N. R., Lugli, G., Lenon, A. L., & Larson, J. (manuscript submitted).

  • Smalheiser, N. R., Lugli, G., Rizavi, H. S., Turecki, D., Torvik, V. I., & Dwivedi, Y. (2009). (manuscript submitted).

  • Smalheiser, N. R., Lugli, G., Torvik, V. I., Mise, N., Ikeda, R., & Abe, K. (2008). Natural antisense transcripts are co-expressed with sense mRNAs in synaptoneurosomes of adult mouse forebrain. Neuroscience Research, 62, 236–239. doi:10.1016/j.neures.2008.08.010.

    Article  PubMed  CAS  Google Scholar 

  • Smalheiser, N. R., Manev, H., & Costa, E. (2001). RNAi and brain function: Was McConnell on the right track? Trends in Neurosciences, 24, 216–218. doi:10.1016/S0166-2236(00)01739-2.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, T., Tian, Q. B., Kuromitsu, J., Kawai, T., & Endo, S. (2007). Characterization of mRNA species that are associated with postsynaptic density fraction by gene chip microarray analysis. Neuroscience Research, 57, 61–85. doi:10.1016/j.neures.2006.09.009.

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan, S., Tong, Y., & Steitz, J. A. (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science, 318, 1931–1934. doi:10.1126/science.1149460.

    Article  PubMed  CAS  Google Scholar 

  • Velleca, M. A., Wallace, M. C., & Merlie, J. P. (1994). A novel synapse-associated noncoding RNA. Molecular and Cellular Biology, 14, 7095–7104.

    PubMed  CAS  Google Scholar 

  • Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., Goodman, R. H., et al. (2005). cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 102, 16426–16431. doi:10.1073/pnas.0508448102.

    Article  PubMed  CAS  Google Scholar 

  • Wayman, G. A., Davare, M., Ando, H., Fortin, D., Varlamova, O., Cheng, H. Y., et al. (2008). An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proceedings of the National Academy of Sciences of the United States of America, 105, 9093–9098. doi:10.1073/pnas.0803072105.

    Article  PubMed  CAS  Google Scholar 

  • Weiler, I. J., Spangler, C. C., Klintsova, A. Y., Grossman, A. W., Kim, S. H., Bertaina-Anglade, V., et al. (2004). Fragile X mental retardation protein is necessary for neurotransmitter-activated protein translation at synapses. Proceedings of the National Academy of Sciences of the United States of America, 101, 17504–17509. doi:10.1073/pnas.0407533101.

    Article  PubMed  CAS  Google Scholar 

  • Weinmann, L., Höck, J., Ivacevic, T., Ohrt, T., Mütze, J., Schwille, P., et al. (2009). Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell, 136, 496–507. doi:10.1016/j.cell.2008.12.023.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J., & Xie, X. (2006). Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biology, 7, R85. doi:10.1186/gb-2006-7-9-r85.

    Article  PubMed  Google Scholar 

  • Xu, X. L., Li, Y., Wang, F., & Gao, F. B. (2008). The steady-state level of the nervous-system-specific microRNA-124a is regulated by dFMR1 in Drosophila. Journal of Neuroscience, 28, 11883–11889. doi:10.1523/JNEUROSCI.4114-08.2008.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, Y., Sankala, H., Zhang, X., & Graves, P. R. (2008). Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochemical Journal, 413, 429–436. doi:10.1042/BJ20080599.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Kolb, F. A., Brondani, V., Billy, E., & Filipowicz, W. (2002). Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO Journal, 21, 5875–5885. doi:10.1093/emboj/cdf582.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, R., Yuan, P., Wang, Y., Hunsberger, J. G., Elkahloun, A., Wei, Y., et al. (2009). Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology, 34, 1395–1405. doi:10.1038/npp.2008.131.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. John Larson, Yogesh Dwivedi, and Vetle Torvik for their expert collaborations. Our research was supported by NIH grants DA15450, MH81099, DC 05793, and LM07292 and by the Stanley Medical Research Institute. The contents of this article are solely the responsibility of the authors and do not necessarily represent the official views of NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil R. Smalheiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smalheiser, N.R., Lugli, G. microRNA Regulation of Synaptic Plasticity. Neuromol Med 11, 133–140 (2009). https://doi.org/10.1007/s12017-009-8065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-009-8065-2

Keywords

Navigation