Skip to main content

Role of Serotonergic System in Regulating Brain Tumor-Associated Neuroinflammatory Responses

  • Protocol
  • First Online:
Neuroprotection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2761))

Abstract

Serotonin signaling regulates wide arrays of both neural and extra-neural functions. Serotonin is also found to affect cancer progression directly as well as indirectly by modulating the immune cells. In the brain, serotonin plays a key role in regulating various functions; disturbance of the normal activities of serotonin leads to various mental illnesses, including the neuroinflammatory response in the central nervous system (CNS). The neuroinflammatory response can be initiated in various psychological illnesses and brain cancer. Serotonergic signaling can impact the functions of both glial as well as the immune cells. It can also affect the tumor immune microenvironment and the inflammatory response associated with brain cancers. Apart from this, many drugs used for treatment of psychological illness are known to modulate serotonergic system and can cross the blood-brain barrier. Understanding the role of serotonergic pathways in regulating neuroinflammatory response and brain cancer will provide a new paradigm in modulating the serotonergic components in treating brain cancer and associated inflammation-induced brain damages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5-HIAA:

5-HydroxyIndole acetic acid

5-HT:

5-Hydroxytryptamine

BBB:

Blood-brain barrier

cAMP:

cyclic Adenosine mono phosphate

CNS:

Central nervous system

CTLs:

Cytotoxic T lymphocytes

DAG:

Diacylglycerol

DC:

Dendritic cells

GBM:

Glioblastoma

HTR:

Serotonin receptors

IL:

Interleukins

IP3:

Inositol-3 phosphate

MAO:

Monoamine oxidase

MDSCs:

Monocyte-derived suppressor cells

MMPs:

Matrix metalloproteinases

NF-κβ:

Nuclear factor-κβ

NK cell:

Natural killer cells

PI3K:

Phosphoionositide-3 kinase

PKA:

Protein kinase A

rDCs:

Regulatory DCs

SERT:

Serotonin transporter

SSRI:

Serotonin reuptake inhibitors

TAM:

Tumor-associated macrophages

TFIID:

Transcription factor IID

TGM2:

Transglutaminase 2

TPH:

Tryptophan hydroxylase

Tregs:

Regulatory T cells

References

  1. Willis WD (2001) Role of neurotransmitters in sensitization of pain responses. Ann N Y Acad Sci 933:142–156

    Article  CAS  PubMed  Google Scholar 

  2. Akyuz E, Polat AK, Eroglu E, Kullu I, Angelopoulou E, Paudel YN (2021) Revisiting the role of neurotransmitters in epilepsy: an updated review. Life Sci 265:118826

    Article  CAS  PubMed  Google Scholar 

  3. Veenstra-VanderWeele J, Anderson GM, Cook EH (2000) Pharmacogenetics and the serotonin system: initial studies and future directions. Eur J Pharmacol 410:165–181

    Article  CAS  PubMed  Google Scholar 

  4. Walther DJ, Peter JU, Bashammakh S, Hörtnagl H, Voits M, Fink H, Bader M (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299:1078197

    Article  Google Scholar 

  5. Rapport MM, Green AA, Page IH (1948) Serum vasoconstrictor, serotonin; isolation and characterization. J Biol Chem 176:1243–1251

    Article  CAS  PubMed  Google Scholar 

  6. Yadav VK, Balaji S, Suresh PS, Liu XS, Lu X, Li Z, Guo XE, Mann JJ, Balapure AK, Gershon MD, Medhamurthy R, Vidal M, Karsenty G, Ducy P (2010) Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat Med 16:308–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hornung JP (2003) The human raphe nuclei and the serotonergic system. J Chem Neuroanat 26:331–343

    Article  CAS  PubMed  Google Scholar 

  8. Charnay Y, Léger L (2010) Brain serotonergic circuitries. Dialogues Clin Neurosci 12:471–487

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mann JJ (1999) Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior. Neuropsychopharmacology 21:99–105

    Article  Google Scholar 

  10. Lanctôt KL, Herrmann N, Mazzotta P (2001) Role of serotonin in the behavioral and psychological symptoms of dementia. J Neuropsychiatry Clin Neurosci 13:5–21

    Article  PubMed  Google Scholar 

  11. Pritchard AL, Pritchard CW, Bentham P, Lendon CL (2007) Role of serotonin transporter polymorphisms in the behavioural and psychological symptoms in probable Alzheimer disease patients. Dement Geriatr Cogn Disord 24:201–206

    Article  CAS  PubMed  Google Scholar 

  12. DiSabato DJ, Quan N, Godbout JP (2016) Neuroinflammation: the devil is in the details. J Neurochem 2:136–153

    Article  Google Scholar 

  13. Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N (2019) Neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol 10:1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kwon HS, Koh S-H (2020) Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener 9:42

    Article  PubMed  PubMed Central  Google Scholar 

  15. Leng F, Edison P (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17:157–172

    Article  PubMed  Google Scholar 

  16. Afridi R, Tsuda M, Ryu H, Suk K (2022) The function of glial cells in the neuroinflammatory and neuroimmunological responses. Cell 11(4):659

    Article  Google Scholar 

  17. Jha MK, Jeon S, Suk K (2012) Glia as a link between neuroinflammation and neuropathic pain. Immune Netw 12:41–47

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bhattarai P, Cosacak MI, Mashkaryan V, Demir S, Popova SD, Govindarajan N, Brandt K, Zhang Y, Chang W, Ampatzis K, Kizil C (2020) Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer’s model of adult zebrafish brain. PLoS Biol 18:e3000585

    Article  PubMed  PubMed Central  Google Scholar 

  19. De-Miguel FF, Leon-Pinzon C, Noguez P, Mendez B (2015) Serotonin release from the neuronal cell body and its long-lasting effects on the nervous system. Philos Trans R Soc Lond B Biol Sci 370:20140196

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mead GE, Hsieh CF, Lee R, Kutlubaev MA, Claxton A, Hankey GJ, Hackett ML (2012) Selective serotonin reuptake inhibitors (SSRIs) for stroke recovery. Cochrane Database Syst Rev 11:CD009286

    PubMed  Google Scholar 

  21. Price A, Rayner L, Okon-Rocha E, Evans A, Valsraj K, Higginson IJ, Hotopf M (2011) Antidepressants for the treatment of depression in neurological disorders: a systematic review and meta-analysis of randomised controlled trials. J Neurol Neurosurg Psychiatry 82:914–923

    Article  PubMed  Google Scholar 

  22. Li N, Ghia J-E, Wang H, McClemens J, Cote F, Suehiro Y, Mallet J, Khan WI (2011) Serotonin activates dendritic cell function in the context of gut inflammation. Am J Pathol 178:662–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Laszlovszky I, Barabássy Á, Németh G (2021) Cariprazine, a broad-spectrum antipsychotic for the treatment of schizophrenia: pharmacology, efficacy, and safety. Adv Ther 38:3652–3673

    Article  PubMed  PubMed Central  Google Scholar 

  24. Campbell RH, Diduch M, Gardner KN, Thomas C (2018) Review of cariprazine in management of psychiatric illness. Ment Health Clin 7:221–229

    Article  PubMed  PubMed Central  Google Scholar 

  25. Molnar MJ, Molnar V, Fedor M, Csehi R, Acsai K, Borsos B, Grosz Z (2022) Improving mood and cognitive symptoms in Huntington’s disease with cariprazine treatment. Front Psych 12:825532

    Article  Google Scholar 

  26. Edinoff AN, Akuly HA, Hanna TA, Ochoa CO, Patti SJ, Ghaffar YA, Kaye AD, Viswanath O, Urits I, Boyer AG, Cornett EM, Kaye AM (2021) Selective serotonin reuptake inhibitors and adverse effects: a narrative review. Neurol Int 13:387–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sutcigil L, Oktenli C, Musabak U, Bozkurt A, Cansever A, Uzun O, Sanisoglu SY, Yesilova Z, Ozmenler N, Ozsahin A, Sengul A (2007) Pro- and anti-inflammatory cytokine balance in major depression: effect of sertraline therapy. Clin Dev Immunol 2007:76396

    Article  PubMed  Google Scholar 

  28. Martin AM, Young RL, Leong L, Rogers GB, Spencer NJ, Jessup CF, Keating DJ (2017) The diverse metabolic roles of peripheral serotonin. Endocrinology 158:1049–1063

    Article  CAS  PubMed  Google Scholar 

  29. Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60:355–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karmakar S, Lal G (2021) Role of serotonin receptor signaling in cancer cells and anti-tumor immunity. Theranostics 11:5296–5312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arreola R, Becerril-Villanueva E, Cruz-Fuentes C, Velasco-Velázquez MA, Garcés-Alvarez ME, Hurtado-Alvarado G, Quintero-Fabian S, Pavón L (2015) Immunomodulatory effects mediated by serotonin. J Immunol Res 2015:354957

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mondanelli G, Volpi C (2021) The double life of serotonin metabolites: in the mood for joining neuronal and immune systems. Curr Opin Immunol 70:1–6

    Article  CAS  PubMed  Google Scholar 

  33. Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20:145–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Herr N, Bode C, Duerschmied D (2017) The effects of serotonin in immune cells. Front Cardiovasc Med 4:48

    Article  PubMed  PubMed Central  Google Scholar 

  35. Domínguez-Soto Á, Usategui A, Casas-Engel ML, Simón-Fuentes M, Nieto C, Cuevas VD, Vega MA, Luis Pablos J, Corbí ÁL (2017) Serotonin drives the acquisition of a profibrotic and anti-inflammatory gene profile through the 5-HT7R-PKA signaling axis. Sci Rep 7:14761

    Article  PubMed  PubMed Central  Google Scholar 

  36. Masson J, Emerit MB, Hamon M, Darmon M (2012) Serotonergic signaling: multiple effectors and pleiotropic effects. Wiley Interdiscip Rev Membr Transp Signal 1:685–713

    Article  CAS  Google Scholar 

  37. Dizeyi N, Hedlund P, Bjartell A, Tinzl M, Austild-Taskén K, Abrahamsson P-A (2011) Serotonin activates MAP kinase and PI3K/Akt signaling pathways in prostate cancer cell lines. Urol Oncol 29:436–445

    Article  CAS  PubMed  Google Scholar 

  38. Soll C, Jang JH, Riener MO, Moritz W, Wild PJ, Graf R, Clavien PA (2010) Serotonin promotes tumor growth in human hepatocellular cancer. Hepatology 51:1244–1254

    Article  CAS  PubMed  Google Scholar 

  39. Quintero-Villegas A, Valdés-Ferrer SI (2019) Role of 5-HT(7) receptors in the immune system in health and disease. Mol Med 26:2

    Article  PubMed  PubMed Central  Google Scholar 

  40. Irving H, Turek I, Kettle C, Yaakob N (2021) Tapping into 5-HT3 receptors to modify metabolic and immune responses. Int J Mol Sci 22:11910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Farrelly LA, Thompson RE, Zhao S, Lepack AE, Lyu Y, Bhanu NV, Zhang B, Loh YE, Ramakrishnan A, Vadodaria KC, Heard KJ, Erikson G, Nakadai T, Bastle RM, Lukasak BJ, Zebroski H 3rd, Alenina N, Bader M, Berton O, Roeder RG, Molina H, Gage FH, Shen L, Garcia BA, Li H, Muir TW, Maze I (2019) Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature 567:535–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nautiyal KM, Dailey CA, Jahn JL, Rodriquez E, Son NH, Sweedler JV, Silver R (2012) Serotonin of mast cell origin contributes to hippocampal function. Eur J Neurosci 36:2347–2359

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nautiyal KM, Ribeiro AC, Pfaff DW, Silver R (2008) Brain mast cells link the immune system to anxiety-like behavior. Proc Natl Acad Sci U S A 105:18053–18057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Akimova E, Lanzenberger R, Kasper S (2009) The serotonin-1A receptor in anxiety disorders. Biol Psychiatry 66:627–635

    Article  CAS  PubMed  Google Scholar 

  45. Borg J (2008) Molecular imaging of the 5-HT(1A) receptor in relation to human cognition. Behav Brain Res 195:103–111

    Article  CAS  PubMed  Google Scholar 

  46. King MV, Marsden CA, Fone KC (2008) A role for the 5-HT(1A), 5-HT4 and 5-HT6 receptors in learning and memory. Trends Pharmacol Sci 29:482–492

    Article  CAS  PubMed  Google Scholar 

  47. Mostany R, Pazos A, Castro ME (2005) Autoradiographic characterisation of [35S]GTPgammaS binding stimulation mediated by 5-HT1B receptor in postmortem human brain. Neuropharmacology 48:25–33

    Article  CAS  PubMed  Google Scholar 

  48. O’Hearn E, Battaglia G, De Souza EB, Kuhar MJ, Molliver ME (1988) Methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) cause selective ablation of serotonergic axon terminals in forebrain: immunocytochemical evidence for neurotoxicity. J Neurosci 8:2788–2803

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gallezot JD, Nabulsi N, Neumeister A, Planeta-Wilson B, Williams WA, Singhal T, Kim S, Maguire RP, McCarthy T, Frost JJ, Huang Y, Ding YS, Carson RE (2010) Kinetic modeling of the serotonin 5-HT(1B) receptor radioligand [(11)C]P943 in humans. J Cereb Blood Flow Metab 30:196–210

    Article  CAS  PubMed  Google Scholar 

  50. MacLean MR (2007) Pulmonary hypertension and the serotonin hypothesis: where are we now? Int J Clin Pract Suppl 156:27–31

    Article  CAS  Google Scholar 

  51. Thompson MD, Noble-Topham S, Percy ME, Andrade DM, Ebers GC (2012) Chromosome 1p36 in migraine with aura: association study of the 5HT(1D) locus. Neuroreport 23:45–48

    Article  CAS  PubMed  Google Scholar 

  52. Varnäs K, Hall H, Bonaventure P, Sedvall G (2001) Autoradiographic mapping of 5-HT(1B) and 5-HT(1D) receptors in the post mortem human brain using [(3)H]GR 125743. Brain Res 915:47–57

    Article  PubMed  Google Scholar 

  53. Li J, Wang Y, Zhou RL, Yang L, Zhang HB, Wang B (2007) Association between serotonin 1D gene polymorphisms and attention deficit hyperactivity disorder comorbid or not comorbid learning disorder. Beijing Da Xue Xue Bao 39:535–538

    CAS  PubMed  Google Scholar 

  54. Bai F, Yin T, Johnstone EM, Su C, Varga G, Little SP, Nelson DL (2004) Molecular cloning and pharmacological characterization of the guinea pig 5-HT1E receptor. Eur J Pharmacol 484:127–139

    Article  CAS  PubMed  Google Scholar 

  55. Lucaites VL, Krushinski JH, Schaus JM, Audia JE, Nelson DL (2005) [3H]LY334370, a novel radioligand for the 5-HT1F receptor. II. Autoradiographic localization in rat, guinea pig, monkey and human brain. Naunyn Schmiedeberg’s Arch Pharmacol 371:178–184

    Article  CAS  Google Scholar 

  56. Zhang G, Stackman RW Jr (2015) The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol 6:225

    Article  PubMed  PubMed Central  Google Scholar 

  57. Švob Štrac D, Pivac N, Mück-Šeler D (2016) The serotonergic system and cognitive function. Transl Neurosci 7:35–49

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wood WE, Lovell PV, Mello CV, Perkel DJ (2011) Serotonin, via HTR2 receptors, excites neurons in a cortical-like premotor nucleus necessary for song learning and production. J Neurosci 31:13808–13815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Landolt HP, Wehrle R (2009) Antagonism of serotonergic 5-HT2A/2C receptors: mutual improvement of sleep, cognition and mood? Eur J Neurosci 29:1795–1809

    Article  PubMed  Google Scholar 

  60. Monti JM (2011) Serotonin control of sleep-wake behavior. Sleep Med Rev 15:269–281

    Article  PubMed  Google Scholar 

  61. Portas CM, Bjorvatn B, Ursin R (2000) Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies. Prog Neurobiol 60:13–35

    Article  CAS  PubMed  Google Scholar 

  62. Drago A, Serretti A (2009) Focus on HTR2C: a possible suggestion for genetic studies of complex disorders. Am J Med Genet B Neuropsychiatr Genet 150B:601–637

    Article  CAS  PubMed  Google Scholar 

  63. Bonhaus DW, Bach C, DeSouza A, Salazar FH, Matsuoka BD, Zuppan P, Chan HW, Eglen RM (1995) The pharmacology and distribution of human 5-hydroxytryptamine2B (5-HT2B) receptor gene products: comparison with 5-HT2A and 5-HT2C receptors. Br J Pharmacol 115:622–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Giorgetti M, Tecott LH (2004) Contributions of 5-HT(2C) receptors to multiple actions of central serotonin systems. Eur J Pharmacol 488:1–9

    Article  CAS  PubMed  Google Scholar 

  65. Wang Q, Zhang H, Xu H, Guo D, Shi H, Li Y, Zhang W, Gu Y (2016) 5-HTR3 and 5-HTR4 located on the mitochondrial membrane and functionally regulated mitochondrial functions. Sci Rep 6:37336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Barnes NM, Hales TG, Lummis SC, Peters JA (2009) The 5-HT3 receptor--the relationship between structure and function. Neuropharmacology 56:273–284

    Article  CAS  PubMed  Google Scholar 

  67. Holbrook JD, Gill CH, Zebda N, Spencer JP, Leyland R, Rance KH, Trinh H, Balmer G, Kelly FM, Yusaf SP, Courtenay N, Luck J, Rhodes A, Modha S, Moore SE, Sanger GJ, Gunthorpe MJ (2009) Characterisation of 5-HT3C, 5-HT3D and 5-HT3E receptor subunits: evolution, distribution and function. J Neurochem 108:384–396

    Article  CAS  PubMed  Google Scholar 

  68. Marner L, Gillings N, Madsen K, Erritzoe D, Baaré WF, Svarer C, Hasselbalch SG, Knudsen GM (2010) Brain imaging of serotonin 4 receptors in humans with [11C]SB207145-PET. NeuroImage 50:855–861

    Article  CAS  PubMed  Google Scholar 

  69. Lucas G, Rymar VV, Du J, Mnie-Filali O, Bisgaard C, Manta S, Lambas-Senas L, Wiborg O, Haddjeri N, Piñeyro G, Sadikot AF, Debonnel G (2007) Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron 55:712–725

    Article  CAS  PubMed  Google Scholar 

  70. Thomas DR (2006) 5-HT5A receptors as a therapeutic target. Pharmacol Ther 111:707–714

    Article  CAS  PubMed  Google Scholar 

  71. de Kock CP, Cornelisse LN, Burnashev N, Lodder JC, Timmerman AJ, Couey JJ, Mansvelder HD, Brussaard AB (2006) NMDA receptors trigger neurosecretion of 5-HT within dorsal raphe nucleus of the rat in the absence of action potential firing. J Physiol 577:891–905

    Article  PubMed  PubMed Central  Google Scholar 

  72. De Felice LJ (2016) A current view of serotonin transporters. F1000Res 28:1884

    Article  Google Scholar 

  73. Yang D, Gouaux E (2021) Illumination of serotonin transporter mechanism and role of the allosteric site. Sci Adv 7:1

    Article  Google Scholar 

  74. Willeit M, Sitte HH, Thierry N, Michalek K, Praschak-Rieder N, Zill P, Winkler D, Brannath W, Fischer MB, Bondy B, Kasper S, Singer EA (2008) Enhanced serotonin transporter function during depression in seasonal affective disorder. Neuropsychopharmacology 33:1503–1513

    Article  CAS  PubMed  Google Scholar 

  75. Huh JR, Veiga-Fernandes H (2020) Neuroimmune circuits in inter-organ communication. Nat Rev Immunol 20:217–228

    Article  CAS  PubMed  Google Scholar 

  76. Wan M, Ding L, Wang D, Han J, Gao P (2020) Serotonin: a potent immune cell modulator in autoimmune diseases. Front Immunol 11:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu H, Denna TH, Storkersen JN, Gerriets VA (2019) Beyond a neurotransmitter: the role of serotonin in inflammation and immunity. Pharmacol Res 140:100–114

    Article  CAS  PubMed  Google Scholar 

  78. Chen Z, Luo J, Li J, Kim G, Stewart A, Urban JF Jr, Huang Y, Chen S, Wu LG, Chesler A, Trinchieri G, Li W, Wu C (2021) Interleukin-33 promotes serotonin release from enterochromaffin cells for intestinal homeostasis. Immunity 54:151–163

    Article  CAS  PubMed  Google Scholar 

  79. Vašíček O, Lojek A, Číž M (2020) Serotonin and its metabolites reduce oxidative stress in murine RAW264.7 macrophages and prevent inflammation. J Physiol Biochem 76:49–60

    Article  PubMed  Google Scholar 

  80. de Las Casas-Engel M, Corbí AL (2014) Serotonin modulation of macrophage polarization: inflammation and beyond. Adv Exp Med Biol 824:89–115

    Article  Google Scholar 

  81. de Las Casas-Engel M, Domínguez-Soto A, Sierra-Filardi E, Bragado R, Nieto C, Puig-Kroger A, Samaniego R, Loza M, Corcuera MT, Gómez-Aguado F, Bustos M, Sánchez-Mateos P, Corbí AL (2013) Serotonin skews human macrophage polarization through HTR2B and HTR7. J Immunol 190:2301–2310

    Article  Google Scholar 

  82. Katoh N, Soga F, Nara T, Tamagawa-Mineoka R, Nin M, Kotani H, Masuda K, Kishimoto S (2006) Effect of serotonin on the differentiation of human monocytes into dendritic cells. Clin Exp Immunol 146:354–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Szabo A, Gogolak P, Koncz G, Foldvari Z, Pazmandi K, Miltner N, Poliska S, Bacsi A, Djurovic S, Rajnavolgyi E (2018) Immunomodulatory capacity of the serotonin receptor 5-HT2B in a subset of human dendritic cells. Sci Rep 8:1765

    Article  PubMed  PubMed Central  Google Scholar 

  84. Idzko M, Panther E, Stratz C, Müller T, Bayer H, Zissel G, Dürk T, Sorichter S, Di Virgilio F, Geissler M, Fiebich B, Herouy Y, Elsner P, Norgauer J, Ferrari D (2004) The serotoninergic receptors of human dendritic cells: identification and coupling to cytokine release. J Immunol 172:6011–6019

    Article  CAS  PubMed  Google Scholar 

  85. Holst K, Guseva D, Schindler S, Sixt M, Braun A, Chopra H, Pabst O, Ponimaskin E (2015) The serotonin receptor 5-HT7R regulates the morphology and migratory properties of dendritic cells. J Cell Sci 128:2866–2880

    CAS  PubMed  Google Scholar 

  86. Soga F, Katoh N, Inoue T, Kishimoto S (2007) Serotonin activates human monocytes and prevents apoptosis. J Invest Dermatol 127:1947–1955

    Article  CAS  PubMed  Google Scholar 

  87. Arzt E, Costas M, Finkielman S, Nahmod VE (1991) Serotonin inhibition of tumor necrosis factor-α synthesis by human monocytes. Life Sci 48:2557–2562

    Article  CAS  PubMed  Google Scholar 

  88. Boehme SA, Lio FM, Sikora L, Pandit TS, Lavrador K, Rao SP, Sriramarao P (2004) Cutting edge: serotonin is a chemotactic factor for eosinophils and functions additively with eotaxin. J Immunol 173:3599–3603

    Article  CAS  PubMed  Google Scholar 

  89. Lima C, Souza VM, Soares AL, Macedo MS, Tavares-de-Lima W, Vargaftig BB (2007) Interference of methysergide, a specific 5-hydroxytryptamine receptor antagonist, with airway chronic allergic inflammation and remodelling in a murine model of asthma. Clin Exp Allergy 37:723–734

    Article  CAS  PubMed  Google Scholar 

  90. Kubes P, Gaboury JP (1996) Rapid mast cell activation causes leukocyte-dependent and -independent permeability alterations. Am J Phys 271:H2438–H2446

    CAS  Google Scholar 

  91. Kushnir-Sukhov NM, Brown JM, Wu Y, Kirshenbaum A, Metcalfe DD (2007) Human mast cells are capable of serotonin synthesis and release. J Allergy Clin Immunol 119:498–499

    Article  CAS  PubMed  Google Scholar 

  92. Kushnir-Sukhov NM, Gilfillan AM, Coleman JW, Brown JM, Bruening S, Toth M, Metcalfe DD (2006) 5-Hydroxytryptamine induces mast cell adhesion and migration. J Immunol 177:6422–6432

    Article  CAS  PubMed  Google Scholar 

  93. Hellstrand K, Hermodsson S (1993) Serotonergic 5-HT1A receptors regulate a cell contact-mediated interaction between natural killer cells and monocytes. Scand J Immunol 37:7–18

    Article  CAS  PubMed  Google Scholar 

  94. Hellstrand K, Czerkinsky C, Ricksten A, Jansson B, Asea A, Kylefjord H, Hermodsson S (1993) Role of serotonin in the regulation of interferon-gamma production by human natural killer cells. J Interf Res 13:33–38

    Article  CAS  Google Scholar 

  95. Hellstrand K, Hermodsson S (1987) Role of serotonin in the regulation of human natural killer cell cytotoxicity. J Immunol 139:869–875

    Article  CAS  PubMed  Google Scholar 

  96. Hellstrand K, Hermodsson S (1990) Enhancement of human natural killer cell cytotoxicity by serotonin: role of non-T/CD16+ NK cells, accessory monocytes, and 5-HT1A receptors. Cell Immunol 127:199–214

    Article  CAS  PubMed  Google Scholar 

  97. Hellstrand K, Asea A, Dahlgren C, Hermodsson S (1994) Histaminergic regulation of NK cells. Role of monocyte-derived reactive oxygen metabolites. J Immunol 153:4940–4947

    Article  CAS  PubMed  Google Scholar 

  98. León-Ponte M, Ahern GP, O’Connell PJ (2007) Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood 109:3139–3146

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ameisen JC, Meade R, Askenase PW (1989) A new interpretation of the involvement of serotonin in delayed-type hypersensitivity. Serotonin-2 receptor antagonists inhibit contact sensitivity by an effect on T cells. J Immunol 142:3171–3179

    Article  CAS  PubMed  Google Scholar 

  100. Rinaldi A, Chiaravalli AM, Mian M, Zucca E, Tibiletti MG, Capella C, Bertoni F (2010) Serotonin receptor 3A expression in normal and neoplastic B cells. Pathobiology 77:129–135

    Article  CAS  PubMed  Google Scholar 

  101. Meredith EJ, Holder MJ, Chamba A, Challa A, Drake-Lee A, Bunce CM, Drayson MT, Pilkington G, Blakely RD, Dyer MJ, Barnes NM, Gordon J (2005) The serotonin transporter (SLC6A4) is present in B-cell clones of diverse malignant origin: probing a potential anti-tumor target for psychotropics. FASEB J 19:1187–1189

    Article  CAS  PubMed  Google Scholar 

  102. Meredith EJ, Chamba A, Holder MJ, Barnes NM, Gordon J (2005) Close encounters of the monoamine kind: immune cells betray their nervous disposition. Immunology 115:289–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Morishima T (1970) 5-Hydroxytryptamine (serotonin) and 5-hydroxytryptophan in mast cells of human mastocytosis. Tohoku J Exp Med 102:121–126

    Article  CAS  PubMed  Google Scholar 

  104. Duerschmied D, Suidan GL, Demers M, Herr N, Carbo C, Brill A, Cifuni SM, Mauler M, Cicko S, Bader M, Idzko M, Bode C, Wagner DD (2013) Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood 121:1008–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mauler M, Schanze N, Krauel K, Schoenichen C, Glatzki F, Poeschl S, Stallmann D, Mezger J, Gauchel N, Sharipova D, Rieder M, Hilgendorf I, Witsch T, Bode C, Duerschmied D (2022) Peripheral serotonin lacks effects on endothelial adhesion molecule expression in acute inflammation. J Thromb Haemost 20:222–229

    Article  CAS  PubMed  Google Scholar 

  106. Kang BN, Ha SG, Bahaie NS, Hosseinkhani MR, Ge XN, Blumenthal MN, Rao SP, Sriramarao P (2013) Regulation of serotonin-induced trafficking and migration of eosinophils. PLoS One 8:23

    Google Scholar 

  107. Inoue H, Nagata N, Koshihara Y (1995) Participation of serotonin in capsaicin-induced mouse ear edema. Jpn J Pharmacol 69:61–68

    Article  CAS  PubMed  Google Scholar 

  108. Nieto C, Rayo I, de Las Casas-Engel M, Izquierdo E, Alonso B, Béchade C, Maroteaux L, Vega MA, Corbí ÁL (2020) Serotonin (5-HT) shapes the macrophage gene profile through the 5-HT(2B)-dependent activation of the aryl hydrocarbon receptor. J Immunol 204:2808–2817

    Article  CAS  PubMed  Google Scholar 

  109. Wang Y-C, Wang X, Yu J, Ma F, Li Z, Zhou Y, Zeng S, Ma X, Li Y-R, Neal A, Huang J, To A, Clarke N, Memarzadeh S, Pellegrini M, Yang L (2021) Targeting monoamine oxidase A-regulated tumor-associated macrophage polarization for cancer immunotherapy. Nat Commun 12:3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D (2020) Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol 20:7–24

    Article  CAS  PubMed  Google Scholar 

  111. Wylie B, Macri C, Mintern JD, Waithman J (2019) Dendritic cells and cancer: from biology to therapeutic intervention. Cancers 11:521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Karmakar S, Pal P, Lal G (2021) Key activating and inhibitory ligands involved in the mobilization of natural killer cells for cancer immunotherapies. Immunotargets Ther 10:387–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Martins LC, Rocha NP, Torres KC, Dos Santos RR, França GS, de Moraes EN, Mukhamedyarov MA, Zefirov AL, Rizvanov AA, Kiyasov AP, Vieira LB, Guimarães MM, Yalvaç ME, Teixeira AL, Bicalho MA, Janka Z, Romano-Silva MA, Palotás A, Reis HJ (2012) Disease-specific expression of the serotonin-receptor 5-HT(2C) in natural killer cells in Alzheimer’s dementia. J Neuroimmunol 251:73–79

    Article  CAS  PubMed  Google Scholar 

  114. Frank MG, Hendricks SE, Johnson DR, Wieseler JL, Burke WJ (1999) Antidepressants augment natural killer cell activity: in vivo and in vitro. Neuropsychobiology 39:18–24

    Article  CAS  PubMed  Google Scholar 

  115. Park EJ, Lee JH, Jeong DC, Han SI, Jeon YW (2015) Natural killer cell activity in patients with major depressive disorder treated with escitalopram. Int Immunopharmacol 28:409–413

    Article  CAS  PubMed  Google Scholar 

  116. Betten A, Dahlgren C, Hermodsson S, Hellstrand K (2001) Serotonin protects NK cells against oxidatively induced functional inhibition and apoptosis. J Leukoc Biol 70:65–72

    Article  CAS  PubMed  Google Scholar 

  117. Waldman AD, Fritz JM, Lenardo MJ (2020) A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 20:651–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rubtsov AV, Rubtsova K, Kappler JW, Jacobelli J, Friedman RS, Marrack P (2015) CD11c-expressing B cells are located at the T cell/B cell border in spleen and are potent APCs. J Immunol 195:71–79

    Article  CAS  PubMed  Google Scholar 

  119. Iglesia MD, Vincent BG, Parker JS, Hoadley KA, Carey LA, Perou CM, Serody JS (2014) Prognostic B-cell signatures using mRNA-seq in patients with subtype-specific breast and ovarian cancer. Clin Cancer Res 20:3818–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nielsen JS, Sahota RA, Milne K, Kost SE, Nesslinger NJ, Watson PH, Nelson BH (2012) CD20+ tumor-infiltrating lymphocytes have an atypical CD27 memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin Cancer Res 18:3281–3292

    Article  CAS  PubMed  Google Scholar 

  121. Gilbert AE, Karagiannis P, Dodev T, Koers A, Lacy K, Josephs DH, Takhar P, Geh JL, Healy C, Harries M, Acland KM, Rudman SM, Beavil RL, Blower PJ, Beavil AJ, Gould HJ, Spicer J, Nestle FO, Karagiannis SN (2011) Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies. PLoS One 6:e19330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. O’Connell PJ, Wang X, Leon-Ponte M, Griffiths C, Pingle SC, Ahern GP (2006) A novel form of immune signaling revealed by transmission of the inflammatory mediator serotonin between dendritic cells and T cells. Blood 107:1010–1017

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chen Y, Leon-Ponte M, Pingle SC, O’Connell PJ, Ahern GP (2015) T lymphocytes possess the machinery for 5-HT synthesis, storage, degradation and release. Acta Physiol (Oxf) 213:860–867

    Article  CAS  PubMed  Google Scholar 

  124. Wu JI, Wang LH (2019) Emerging roles of gap junction proteins connexins in cancer metastasis, chemoresistance and clinical application. J Biomed Sci 26:8

    Article  PubMed  PubMed Central  Google Scholar 

  125. Khan NA, Poisson JP (1999) 5-HT3 receptor-channels coupled with Na+ influx in human T cells: role in T cell activation. J Neuroimmunol 99:53–60

    Article  CAS  PubMed  Google Scholar 

  126. Wang X, Li B, Kim YJ, Wang YC, Li Z, Yu J, Zeng S, Ma X, Choi IY, Di Biase S, Smith DJ, Zhou Y, Li YR, Ma F, Huang J, Clarke N, To A, Gong L, Pham AT, Moon H, Pellegrini M, Yang L (2021) Targeting monoamine oxidase A for T cell-based cancer immunotherapy. Sci Immunol 6:eabh2383

    Article  CAS  PubMed  Google Scholar 

  127. Hernandez ME, Martinez-Fong D, Perez-Tapia M, Estrada-Garcia I, Estrada-Parra S, Pavón L (2010) Evaluation of the effect of selective serotonin-reuptake inhibitors on lymphocyte subsets in patients with a major depressive disorder. Eur Neuropsychopharmacol 20:88–95

    Article  CAS  PubMed  Google Scholar 

  128. Davis RB, Meeker WR, McQuarrie DG (1960) Immediate effects of intravenous endotoxin on serotonin concentrations and blood platelets. Circ Res 8:234–239

    Article  CAS  PubMed  Google Scholar 

  129. Mössner R, Lesch KP (1998) Role of serotonin in the immune system and in neuroimmune interactions. Brain Behav Immun 12:249–271

    Article  PubMed  Google Scholar 

  130. Wagner DD, Frenette PS (2008) The vessel wall and its interactions. Blood 111:5271–5281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Endo Y, Shibazaki M, Nakamura M, Takada H (1997) Contrasting effects of lipopolysaccharides (endotoxins) from oral black-pigmented bacteria and Enterobacteriaceae on platelets, a major source of serotonin, and on histamine-forming enzyme in mice. J Infect Dis 175:1404–1412

    Article  CAS  PubMed  Google Scholar 

  132. Ito T, Ikeda U, Shimpo M, Yamamoto K, Shimada K (2000) Serotonin increases interleukin-6 synthesis in human vascular smooth muscle cells. Circulation 102:2522–2527

    Article  CAS  PubMed  Google Scholar 

  133. Dukhinova M, Kuznetsova I, Kopeikina E, Veniaminova E, Yung AWY, Veremeyko T, Levchuk K, Barteneva NS, Wing-Ho KK, Yung W-H, Liu JYH, Rudd J, Yau SSY, Anthony DC, Strekalova T, Ponomarev ED (2018) Platelets mediate protective neuroinflammation and promote neuronal plasticity at the site of neuronal injury. Brain Behav Immun 74:7–27

    Article  PubMed  Google Scholar 

  134. Kim Y-K, Jeon WS (2018) Neuroinflammation and the immune-kynurenine pathway in anxiety disorders. Curr Neuropharmacol 16:574–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Correia AS, Vale N (2022) Tryptophan metabolism in depression: a narrative review with a focus on serotonin and kynurenine pathways. Int J Mol Sci 23:8493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Miura H, Ozaki N, Sawada M, Isobe K, Ohta T, Nagatsu T (2008) A link between stress and depression: shifts in the balance between the kynurenine and serotonin pathways of tryptophan metabolism and the etiology and pathophysiology of depression. Stress 11:198–209

    Article  CAS  PubMed  Google Scholar 

  137. Béchade C, D’Andrea I, Etienne F, Verdonk F, Moutkine I, Banas SM, Kolodziejczak M, Diaz SL, Parkhurst CN, Gan WB, Maroteaux L, Roumier A (2021) The serotonin 2B receptor is required in neonatal microglia to limit neuroinflammation and sickness behavior in adulthood. Glia 69:638–654

    Article  PubMed  Google Scholar 

  138. Hwang J, Zheng LT, Ock J, Lee MG, Suk K (2008) Anti-inflammatory effects of m-chlorophenylpiperazine in brain glia cells. Int Immunopharmacol 8:1686–1694

    Article  CAS  PubMed  Google Scholar 

  139. Abdel-Hamid NM, Shehata DE, Abdel-Ghany AA, Ragaa A, Wahid A (2016) Serum serotonin as unexpected potential marker for staging of experimental hepatocellular carcinoma. Biomed Pharmacother 83:407–411

    Article  CAS  PubMed  Google Scholar 

  140. Shu B, Zhai M, Miao X, He C, Deng C, Fang Y, Luo M, Liu L, Liu S (2018) Serotonin and YAP/VGLL4 balance correlated with progression and poor prognosis of hepatocellular carcinoma. Sci Rep 8:9739

    Article  PubMed  PubMed Central  Google Scholar 

  141. Pai VP, Marshall AM, Hernandez LL, Buckley AR, Horseman ND (2009) Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival. Breast Cancer Res 11:R81

    Article  PubMed  PubMed Central  Google Scholar 

  142. Hejazi SH, Ahangari G, Deezagi A (2015) Alternative viewpoint against breast cancer based on selective serotonin receptors 5HTR3A and 5HTR2A antagonists that can mediate apoptosis in MCF-7 cell line. Curr Drug Discov Technol 12:240–249

    Article  CAS  PubMed  Google Scholar 

  143. Sonier B, Arseneault M, Lavigne C, Ouellette RJ, Vaillancourt C (2006) The 5-HT2A serotoninergic receptor is expressed in the MCF-7 human breast cancer cell line and reveals a mitogenic effect of serotonin. Biochem Biophys Res Commun 343:1053–1059

    Article  CAS  PubMed  Google Scholar 

  144. Dizeyi N, Bjartell A, Nilsson E, Hansson J, Gadaleanu V, Cross N, Abrahamsson PA (2004) Expression of serotonin receptors and role of serotonin in human prostate cancer tissue and cell lines. Prostate 59:328–336

    Article  CAS  PubMed  Google Scholar 

  145. Soll C, Riener MO, Oberkofler CE, Hellerbrand C, Wild PJ, DeOliveira ML, Clavien PA (2012) Expression of serotonin receptors in human hepatocellular cancer. Clin Cancer Res 18:5902–5910

    Article  CAS  PubMed  Google Scholar 

  146. Dizeyi N, Bjartell A, Hedlund P, Taskén KA, Gadaleanu V, Abrahamsson PA (2005) Expression of serotonin receptors 2B and 4 in human prostate cancer tissue and effects of their antagonists on prostate cancer cell lines. Eur Urol 47:895–900

    Article  CAS  PubMed  Google Scholar 

  147. Liu Y, Zhang H, Wang Z, Wu P, Gong W (2019) 5-Hydroxytryptamine1a receptors on tumour cells induce immune evasion in lung adenocarcinoma patients with depression via autophagy/pSTAT3. Eur J Cancer 114:8–24

    Article  CAS  PubMed  Google Scholar 

  148. Mahe C, Bernhard M, Bobirnac I, Keser C, Loetscher E, Feuerbach D, Dev KK, Schoeffter P (2004) Functional expression of the serotonin 5-HT7 receptor in human glioblastoma cell lines. Br J Pharmacol 143:404–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lu Q, Ding Y, Li Y, Lu Q (2020) 5-HT receptor agonist Valerenic Acid enhances the innate immunity signal and suppresses glioblastoma cell growth and invasion. Int J Biol Sci 16:2104–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Otto-Meyer S, DeFaccio R, Dussold C, Ladomersky E, Zhai L, Lauing KL, Bollu LR, Amidei C, Lukas RV, Scholtens DM, Wainwright DA (2020) A retrospective survival analysis of Glioblastoma patients treated with selective serotonin reuptake inhibitors. Brain Behav Immun Health 2:16

    Google Scholar 

  151. Then CK, Liu KH, Liao MH, Chung KH, Wang JY, Shen SC (2017) Antidepressants, sertraline and paroxetine, increase calcium influx and induce mitochondrial damage-mediated apoptosis of astrocytes. Oncotarget 8:115490–115502

    Article  PubMed  PubMed Central  Google Scholar 

  152. Liu KH, Yang ST, Lin YK, Lin JW, Lee YH, Wang JY, Hu CJ, Lin EY, Chen SM, Then CK, Shen SC (2015) Fluoxetine, an antidepressant, suppresses glioblastoma by evoking AMPAR-mediated calcium-dependent apoptosis. Oncotarget 6:5088–5101

    Article  PubMed  Google Scholar 

  153. Chen VC, Hsieh YH, Chen LJ, Hsu TC, Tzang BS (2018) Escitalopram oxalate induces apoptosis in U-87MG cells and autophagy in GBM8401 cells. J Cell Mol Med 22:1167–1178

    Article  CAS  PubMed  Google Scholar 

  154. Bi J, Khan A, Tang J, Armando AM, Wu S, Zhang W, Gimple RC, Reed A, Jing H, Koga T, Wong IT-L, Gu Y, Miki S, Yang H, Prager B, Curtis EJ, Wainwright DA, Furnari FB, Rich JN, Cloughesy TF, Kornblum HI, Quehenberger O, Rzhetsky A, Cravatt BF, Mischel PS (2021) Targeting glioblastoma signaling and metabolism with a re-purposed brain-penetrant drug. Cell Rep 37:109957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhang J, Guo Z, Xie Q, Zhong C, Gao X, Yang Q (2022) Tryptophan hydroxylase 1 drives glioma progression by modulating the serotonin/L1CAM/NF-κB signaling pathway. BMC Cancer 22:457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kast RE (2010) Glioblastoma chemotherapy adjunct via potent serotonin receptor-7 inhibition using currently marketed high-affinity antipsychotic medicines. Br J Pharmacol 161:481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lieb K, Biersack L, Waschbisch A, Orlikowski S, Akundi RS, Candelario-Jalil E, Hull M, Fiebich BL (2005) Serotonin via 5-HT7 receptors activates p38 mitogen-activated protein kinase and protein kinase C epsilon resulting in interleukin-6 synthesis in human U373 MG astrocytoma cells. J Neurochem 93:549–559

    Article  CAS  PubMed  Google Scholar 

  158. Varatharaj A, Galea I (2017) The blood-brain barrier in systemic inflammation. Brain Behav Immun 60:1–12

    Article  CAS  PubMed  Google Scholar 

  159. Da Ros M, De Gregorio V, Iorio AL, Giunti L, Guidi M, de Martino M, Genitori L, Sardi I (2018) Glioblastoma chemoresistance: the double play by microenvironment and blood-brain barrier. Int J Mol Sci 19:2879

    Article  PubMed  PubMed Central  Google Scholar 

  160. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  CAS  PubMed  Google Scholar 

  161. Erickson MA, Dohi K, Banks WA (2012) Neuroinflammation: a common pathway in CNS diseases as mediated at the blood-brain barrier. Neuroimmunomodulation 19:121–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Sonar SA, Lal G (2018) Blood-brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 103:839–853

    Article  CAS  PubMed  Google Scholar 

  163. Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66:1–9

    Article  PubMed  Google Scholar 

  164. Sethi G, Sung B, Aggarwal BB (2008) TNF: a master switch for inflammation to cancer. Front Biosci 13:5094–5107

    Article  CAS  PubMed  Google Scholar 

  165. Kore RA, Abraham EC (2014) Inflammatory cytokines, interleukin-1 beta and tumor necrosis factor-alpha, upregulated in glioblastoma multiforme, raise the levels of CRYAB in exosomes secreted by U373 glioma cells. Biochem Biophys Res Commun 453:326–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Könnecke H, Bechmann I (2013) The role of microglia and matrix metalloproteinases involvement in neuroinflammation and gliomas. Clin Dev Immunol 914104:14

    Google Scholar 

  167. Joseph JV, Balasubramaniyan V, Walenkamp A, Kruyt FA (2013) TGF-β as a therapeutic target in high grade gliomas—promises and challenges. Biochem Pharmacol 85:478–485

    Article  CAS  PubMed  Google Scholar 

  168. Wolburg H, Noell S, Fallier-Becker P, Mack AF, Wolburg-Buchholz K (2012) The disturbed blood-brain barrier in human glioblastoma. Mol Asp Med 33:579–589

    Article  CAS  Google Scholar 

  169. Huettner C, Czub S, Kerkau S, Roggendorf W, Tonn JC (1997) Interleukin 10 is expressed in human gliomas in vivo and increases glioma cell proliferation and motility in vitro. Anticancer Res 17:3217–3224

    CAS  PubMed  Google Scholar 

  170. Van Meir EG (1995) Cytokines and tumors of the central nervous system. Glia 15:264–288

    Article  PubMed  Google Scholar 

  171. Crane CA, Ahn BJ, Han SJ, Parsa AT (2012) Soluble factors secreted by glioblastoma cell lines facilitate recruitment, survival, and expansion of regulatory T cells: implications for immunotherapy. Neuro-Oncology 14:584–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Perng P, Lim M (2015) Immunosuppressive mechanisms of malignant gliomas: parallels at non-CNS sites. Front Oncol 6:153

    Google Scholar 

  173. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    Article  CAS  PubMed  Google Scholar 

  174. Zhang J, Sarkar S, Cua R, Zhou Y, Hader W, Yong VW (2012) A dialog between glioma and microglia that promotes tumor invasiveness through the CCL2/CCR2/interleukin-6 axis. Carcinogenesis 33:312–319

    Article  CAS  PubMed  Google Scholar 

  175. Roesch S, Rapp C, Dettling S, Herold-Mende C (2018) When immune cells turn bad-tumor-associated microglia/macrophages in glioma. Int J Mol Sci 19:436

    Article  PubMed  PubMed Central  Google Scholar 

  176. Gutmann DH, Kettenmann H (2019) Microglia/brain macrophages as central drivers of brain tumor pathobiology. Neuron 104:442–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Chen R, Keoni C, Waker CA, Lober RM, Chen YH, Gutmann DH (2019) KIAA1549-BRAF expression establishes a permissive tumor microenvironment through NFκB-mediated CCL2 production. Neoplasia 21:52–60

    Article  CAS  PubMed  Google Scholar 

  178. Hambardzumyan D, Gutmann DH, Kettenmann H (2016) The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19:20–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Grabowski MM, Sankey EW, Ryan KJ, Chongsathidkiet P, Lorrey SJ, Wilkinson DS, Fecci PE (2021) Immune suppression in gliomas. J Neuro-Oncol 151:3–12

    Article  Google Scholar 

  180. Mi Y, Guo N, Luan J, Cheng J, Hu Z, Jiang P, Jin W, Gao X (2020) The emerging role of myeloid-derived suppressor cells in the glioma immune suppressive microenvironment. Front Immunol 11:737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Miyazaki T, Ishikawa E, Sugii N, Matsuda M (2020) Therapeutic strategies for overcoming immunotherapy resistance mediated by immunosuppressive factors of the glioblastoma microenvironment. Cancers 12:1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Yang I, Tihan T, Han SJ, Wrensch MR, Wiencke J, Sughrue ME, Parsa AT (2010) CD8+ T-cell infiltrate in newly diagnosed glioblastoma is associated with long-term survival. J Clin Neurosci 17:1381–1385

    Article  PubMed  PubMed Central  Google Scholar 

  183. Mohme M, Neidert MC (2020) Tumor-specific T cell activation in malignant brain tumors. Front Immunol 11:205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Woroniecka K, Chongsathidkiet P, Rhodin K, Kemeny H, Dechant C, Farber SH, Elsamadicy AA, Cui X, Koyama S, Jackson C, Hansen LJ, Johanns TM, Sanchez-Perez L, Chandramohan V, Yu YA, Bigner DD, Giles A, Healy P, Dranoff G, Weinhold KJ, Dunn GP, Fecci PE (2018) T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma. Clin Cancer Res 24:4175–4186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, Gandhi L, Redig AJ, Rodig SJ, Asahina H, Jones RE, Kulkarni MM, Kuraguchi M, Palakurthi S, Fecci PE, Johnson BE, Janne PA, Engelman JA, Gangadharan SP, Costa DB, Freeman GJ, Bueno R, Hodi FS, Dranoff G, Wong KK, Hammerman PS (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 7:10501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Tay RE, Richardson EK, Toh HC (2021) Revisiting the role of CD4+ T cells in cancer immunotherapy-new insights into old paradigms. Cancer Gene Ther 28:5–17

    Article  CAS  PubMed  Google Scholar 

  187. El Andaloussi A, Lesniak MS (2006) An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro-Oncology 8:234–243

    Article  PubMed  PubMed Central  Google Scholar 

  188. Mu L, Yang C, Gao Q, Long Y, Ge H, DeLeon G, Jin L, Chang YE, Sayour EJ, Ji J, Jiang J, Kubilis PS, Qi J, Gu Y, Wang J, Song Y, Mitchell DA, Lin Z, Huang J (2017) CD4+ and perivascular Foxp3+ T cells in glioma correlate with angiogenesis and tumor progression. Front Immunol 8:1415

    Article  Google Scholar 

  189. Alghamri MS, McClellan BL, Hartlage CS, Haase S, Faisal SM, Thalla R, Dabaja A, Banerjee K, Carney SV, Mujeeb AA, Olin MR, Moon JJ, Schwendeman A, Lowenstein PR, Castro MG (2021) Targeting neuroinflammation in brain cancer: uncovering mechanisms, pharmacological targets, and neuropharmaceutical developments. Front Pharmacol 12:680021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Guan X, Hasan MN, Maniar S, Jia W, Sun D (2018) Reactive astrocytes in glioblastoma multiforme. Mol Neurobiol 55:6927–6938

    Article  CAS  PubMed  Google Scholar 

  191. Henrik Heiland D, Ravi VM, Behringer SP, Frenking JH, Wurm J, Joseph K, Garrelfs NWC, Strähle J, Heynckes S, Grauvogel J, Franco P, Mader I, Schneider M, Potthoff AL, Delev D, Hofmann UG, Fung C, Beck J, Sankowski R, Prinz M, Schnell O (2019) Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat Commun 10:2541

    Article  PubMed  PubMed Central  Google Scholar 

  192. Yang N, Yan T, Zhu H, Liang X, Leiss L, Sakariassen P, Skaftnesmo KO, Huang B, Costea DE, Enger P, Li X, Wang J (2014) A co-culture model with brain tumor-specific bioluminescence demonstrates astrocyte-induced drug resistance in glioblastoma. J Transl Med 12:278

    Article  PubMed  PubMed Central  Google Scholar 

  193. Kim JK, Jin X, Sohn YW, Jin X, Jeon HY, Kim EJ, Ham SW, Jeon HM, Chang SY, Oh SY, Yin J, Kim SH, Park JB, Nakano I, Kim H (2014) Tumoral RANKL activates astrocytes that promote glioma cell invasion through cytokine signaling. Cancer Lett 353:194–200

    Article  CAS  PubMed  Google Scholar 

  194. Seike T, Fujita K, Yamakawa Y, Kido MA, Takiguchi S, Teramoto N, Iguchi H, Noda M (2011) Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clin Exp Metastasis 28:13–25

    Article  CAS  PubMed  Google Scholar 

  195. Placone AL, Quiñones-Hinojosa A, Searson PC (2016) The role of astrocytes in the progression of brain cancer: complicating the picture of the tumor microenvironment. Tumour Biol 37:61–69

    Article  CAS  PubMed  Google Scholar 

  196. Debinski W, Gibo DM, Slagle B, Powers SK, Gillespie GY (1999) Receptor for interleukin 13 is abundantly and specifically over-expressed in patients with glioblastoma multiforme. Int J Oncol 15:481–486

    CAS  PubMed  Google Scholar 

  197. Gomez GG, Kruse CA (2006) Mechanisms of malignant glioma immune resistance and sources of immunosuppression. Gene Ther Mol Biol 10:133–146

    PubMed  PubMed Central  Google Scholar 

  198. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, Ostberg JR, Blanchard MS, Kilpatrick J, Simpson J, Kurien A, Priceman SJ, Wang X, Harshbarger TL, D’Apuzzo M, Ressler JA, Jensen MC, Barish ME, Chen M, Portnow J, Forman SJ, Badie B (2016) Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 375:2561–2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Harshyne LA, Nasca BJ, Kenyon LC, Andrews DW, Hooper DC (2016) Serum exosomes and cytokines promote a T-helper cell type 2 environment in the peripheral blood of glioblastoma patients. Neuro-Oncology 18:206–215

    Article  CAS  PubMed  Google Scholar 

  200. De Boeck A, Ahn BY, D’Mello C, Lun X, Menon SV, Alshehri MM, Szulzewsky F, Shen Y, Khan L, Dang NH, Reichardt E, Goring KA, King J, Grisdale CJ, Grinshtein N, Hambardzumyan D, Reilly KM, Blough MD, Cairncross JG, Yong VW, Marra MA, Jones SJM, Kaplan DR, McCoy KD, Holland EC, Bose P, Chan JA, Robbins SM, Senger DL (2020) Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. Nat Commun 11:4997

    Article  PubMed  PubMed Central  Google Scholar 

  201. Hao C, Parney IF, Roa WH, Turner J, Petruk KC, Ramsay DA (2002) Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 cytokine dysregulation. Acta Neuropathol 103:171–178

    Article  CAS  PubMed  Google Scholar 

Download references

Declaration of Interests

The authors declare no competing interests.

Funding Supports

GL received the Swarna Jayanti Fellowship (DST/SJF/LSA-01/2017–18), from the Department of Science and Technology and a research grant from the Science and Engineering Research Board (CRG/2022/007108), Ministry of Science and Technology, Government of India. SK received a Senior Research Fellowship from the Council of Scientific and Industrial Research (CSIR), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girdhari Lal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Karmakar, S., Lal, G. (2024). Role of Serotonergic System in Regulating Brain Tumor-Associated Neuroinflammatory Responses. In: Ray, S.K. (eds) Neuroprotection. Methods in Molecular Biology, vol 2761. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3662-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3662-6_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3661-9

  • Online ISBN: 978-1-0716-3662-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics