Skip to main content

Bidimensional Analyses of the Intra- and Extracellular Proteomes of Steroid Producer Mycobacteria

  • Protocol
  • First Online:
Microbial Steroids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2704))

Abstract

The importance of the pathogenic mycobacteria has mainly focused the omic analyses on different aspects of their clinical significance. However, those industrially relevant mycobacteria have received less attention, even though the steroid market sales in 2021 were estimated in $56.45 billion.

The extracellular proteome, due to its relevance in the sterol processing and uptake, and the intracellular proteome, because of its role in steroids bioconversion, are the core of the present chapter. Both, monodimensional gels, as preparatory analysis, and bidimensional gels as proteome analysis are described. As a proof of concept, the protein extraction methods for both sub-proteomes of Mycobacterium are described. Thus, procedures and relevant key points of these proteome analyses are fully detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bott M (2007) Corynebacteria: the good guys and the bad guys. Microbiol Today 34:74–77

    Google Scholar 

  2. Barreiro C, Martín JF (2015) Corynebacterium genus, a dual group of clinical and industrial relevant bacteria. In: Barreiro C (ed) New trends in Corynebacterium glutamicum: beyond the amino acids. Nova Science Publishers, Inc, New York

    Google Scholar 

  3. Shtratnikova VY, Bragin EY, Dovbnya DV et al (2014) Complete genome sequence of sterol-transforming Mycobacterium neoaurum strain VKM Ac-1815D. Genome Announc 2:12–13

    Article  Google Scholar 

  4. Tortoli E (2014) Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin Microbiol Rev 27:727–752

    Article  PubMed  PubMed Central  Google Scholar 

  5. Euzéby JP List of Prokaryotic names with standing in nomenclature (https://www.bacterio.net/)

  6. Goodfellow M, Kämpfer P, Busse H-J et al (2012) Bergey’s manual of systematic bacteriology, The Actinobacteria, part B, vol 5. Springer

    Book  Google Scholar 

  7. Cole ST, Brosch R, Parkhill J et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  CAS  PubMed  Google Scholar 

  8. Mattow J, Siejak F, Hagens K et al (2009) Two-dimensional gel electrophoresis-based proteomics of mycobacteria. Methods Mol Biol 465:111–142

    Article  PubMed  Google Scholar 

  9. Uhía I, Galán B, Kendall SL et al (2012) Cholesterol metabolism in Mycobacterium smegmatis. Environ Microbiol Rep 4:168–182

    Article  PubMed  Google Scholar 

  10. Liu M, Zhu Z-T, Tao X-Y et al (2016) RNA-Seq analysis uncovers non-coding small RNA system of Mycobacterium neoaurum in the metabolism of sterols to accumulate steroid intermediates. Microb Cell Fact 15:64

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cornejo-Granados F, López-Leal G, Mata-Espinosa DA et al (2021) Targeted RNA-Seq reveals the M. tuberculosis transcriptome from an in vivo infection model. Biology 10:848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Korb VC, Chuturgoon AA, Moodley D (2016) Mycobacterium tuberculosis: manipulator of protective immunity. Int J Mol Sci 17:131

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kumar B (2015) World Leprosy Day 2015: renewing commitment for a leprosy free world! Indian J Med Res 141(1):1–4

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bisht D, Singhal N, Sharma P et al (2006) Analysis of mycobacterial strains by two-dimensional gel electrophoresis. J Commun Dis 38:255–262

    PubMed  Google Scholar 

  15. Betts JC, Dodson P, Quan S et al (2000) Comparison of the proteome of Mycobacterium tuberculosis strain H37Rv with clinical isolate CDC 1551. Microbiology 146:3205–3216

    Article  CAS  PubMed  Google Scholar 

  16. Jungblut PR, Schaible UE, Mollenkopf HJ et al (1999) Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol Microbiol 33:1103–1117

    Article  CAS  PubMed  Google Scholar 

  17. Kruh NA, Troudt J, Izzo A et al (2010) Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. PLoS One 5:e13938

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schmidt F, Donahoe S, Hagens K et al (2004) Complementary analysis of the Mycobacterium tuberculosis proteome by two-dimensional electrophoresis and isotope-coded affinity tag technology. Mol Cell Proteomics 3:24–42

    Article  CAS  PubMed  Google Scholar 

  19. Gupta MK, Subramanian V, Yadav JS (2009) Immunoproteomic identification of secretory & subcellular protein antigens & functional evaluation of the secretome fraction of Mycobacterium immunogenum a newly recognized species of the Mycobacterium chelonae-Mycobacterium abscessus. J Proteome Res 8:2319–2330

    Article  CAS  PubMed  Google Scholar 

  20. Kruh-Garcia NA, Murray M, Prucha JG et al (2014) Antigen 85 variation across lineages of Mycobacterium tuberculosis-implications for vaccine and biomarker success. J Proteome 97:141–150

    Article  CAS  Google Scholar 

  21. Mattow J, Schaible UE, Schmidt F et al (2003) Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen. Electrophoresis 24:3405–3420

    Article  CAS  PubMed  Google Scholar 

  22. Ranganathan S, Garg G (2009) Secretome: clues into pathogen infection and clinical applications. Genome Med 1:113

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yadav JS, Gupta M (2012) Secretome differences between the taxonomically related but clinically differing mycobacterial species M. abscessus & M. chelonae. J Integr OMICS 2:64–79

    Article  Google Scholar 

  24. Mollenkopf HJ, Jungblut PR, Raupach B et al (1999) A dynamic two-dimensional polyacrylamide gel electrophoresis database: the mycobacterial proteome via Internet. Electrophoresis 20:2172–2180

    Article  CAS  PubMed  Google Scholar 

  25. He Z, De Buck J (2010) Cell wall proteome analysis of Mycobacterium smegmatis strain MC2 155. BMC Microbiol 10:121

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sih CJ, Wang KC (1965) A new route to estrone from sterol. J Am Chem Soc 87:1387–1388

    Article  CAS  PubMed  Google Scholar 

  27. Al Jasem Y, Khan M, Taha A et al (2014) Preparation of steroidal hormones with an emphasis on transformations of phytosterols and cholesterol – a review. Mediterr J Chem 3:796–830

    Article  Google Scholar 

  28. Donova MV, Egorova OV (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94:1423–1447

    Article  CAS  PubMed  Google Scholar 

  29. Fernández-Cabezón L, Galán B, García JL (2018) New insights on steroid biotechnology. Front Microbiol 9:958

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang F, Yao K, Wei D (2011) From soybean phytosterols to steroid hormones. In: El-Shemy H (ed) Soybean and health. InTech, Rijeka, Croatia, pp 231–252

    Google Scholar 

  31. Bragin EY, Shtratnikova VY, Dovbnya DV et al (2013) Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains. J Steroid Biochem Mol Biol 138:41–53

    Article  CAS  PubMed  Google Scholar 

  32. Rodríguez-García A, Fernández-Alegre E, Morales A et al (2016) Complete genome sequence of “Mycobacterium neoaurum” NRRL B-3805, an androstenedione (AD) producer for industrial biotransformation of sterols. J Biotechnol 224:64–65

    Article  PubMed  Google Scholar 

  33. Barreiro C (2015) Methods in proteomics applied to Corynebacterium glutamicum. In: Barreiro C (ed) New trends in Corynebacterium glutamicum: beyond the amino acid. Nova Science Publishers, Inc, New York

    Google Scholar 

  34. Barreiro C, Martín JF, García-Estrada C (2012) Proteomics methodology applied to the analysis of filamentous fungi – new trends for an impressive diverse group of organisms. In: Prasain JK (ed) Tandem mass spectrometry – applications and principles. InTech, Rijeka, Croatia

    Google Scholar 

  35. Jeffery CJ (2014) An introduction to protein moonlighting. Biochem Soc Trans 42:1679–1683

    Article  CAS  PubMed  Google Scholar 

  36. Jeffery CJ (2009) Moonlighting proteins-an update. Mol BioSyst 5:345–350

    Article  CAS  PubMed  Google Scholar 

  37. Marsheck WJ, Kraychy S, Muir RD (1972) Microbial degradation of sterols. Appl Microbiol 23:72–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Josefsen KD, Nordborg A, Sletta H (2017) Bioconversion of phytosterols into androstenedione by Mycobacterium. In: Barredo JL, Herráiz I (eds) Microbial steroids: methods and protocols. Humana Press, New York, pp 177–197

    Chapter  Google Scholar 

  39. Candiano G, Bruschi M, Musante L et al (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333

    Article  CAS  PubMed  Google Scholar 

  40. Greenbaum D, Luscombe NM, Jansen R et al (2001) Interrelating different types of genomic data, from proteome to secretome: ’oming in on function. Genome Res 11:1463–1468

    Article  CAS  PubMed  Google Scholar 

  41. Makridakis M, Roubelakis MG, Vlahou A (2013) Stem cells: insights into the secretome. Biochim Biophys Acta 1834:2380–2384

    Article  CAS  PubMed  Google Scholar 

  42. Tjalsma H, Bolhuis A, Jongbloed JD et al (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fischer M, Sawers RG (2013) A universally applicable and rapid method for measuring the growth of Streptomyces and other filamentous microorganisms by methylene blue adsorption-desorption. Appl Environ Microbiol 79:4499–4502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  45. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  46. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  47. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  48. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    Article  PubMed  Google Scholar 

  49. Fazekas de St Groth S, Webster RG, Datyner A (1963) Two new staining procedures for quantitative estimation of proteins on electrophoretic strips. Biochim Biophys Acta 71:377–391

    Article  CAS  PubMed  Google Scholar 

  50. Meyer TS, Lamberts BL (1965) Use of coomassie brilliant blue R250 for the electrophoresis of microgram quantities of parotid saliva proteins on acrylamide-gel strips. Biochim Biophys Acta 107:144–145

    Article  CAS  PubMed  Google Scholar 

  51. Unlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  PubMed  Google Scholar 

  52. Timms JF, Cramer R (2008) Difference gel electrophoresis. Proteomics 8:4886–4897

    Article  CAS  PubMed  Google Scholar 

  53. Gorg A (2004) 2-D electrophoresis. Principles and methods. GE Healthcare

    Google Scholar 

  54. Westermeier R, Naven T, Hopker H-R (2008) Proteomics in practice: a guide to successful experimental design, 2nd edn, completely revised edition. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  55. Westermeier R (2006) Sensitive, quantitative, and fast modifications for Coomassie Blue staining of polyacrylamide gels. Proteomics 6 Suppl 2:61–64

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to (a) the ESTELLA project (“DESign of bio-based Thermoset polymer with rEcycLing capabiLity by dynAmic bonds for bio-composite manufacturing”) (Project no. 101058371) funded by the European Union through the Horizon Europe Framework Programme (call: HORIZON-CL4-2021-RESILIENCE-01-11) and (b) the BioPac project (Development of bioactive and lifespan-controlled bioplastics) (Ref. no. TED2021-131864B-C21) funded by the MCIN (Ministerio de Ciencia e Innovación)/AEI (Agencia Estatal de Investigación)/10.13039/501100011033 (Digital Object Identifier) and the European Union “NextGenerationEU”/PRTR (Recovery, Transformation and Resilience Plan).

Ana Ibañez is supported by a “Margarita Salas” modality postdoctoral grant (Reference no. UP2021-025) through the University of León awarded by the Spanish Ministry of Universities within the Recovery, Transformation and Resilience Plan (Modernization and Digitalization of the Educational System), the funding of which comes from the European Recovery Instrument European Union-NextGenerationEU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Barreiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barreiro, C., Ibáñez, A.M. (2023). Bidimensional Analyses of the Intra- and Extracellular Proteomes of Steroid Producer Mycobacteria. In: Barreiro, C., Barredo, JL. (eds) Microbial Steroids. Methods in Molecular Biology, vol 2704. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3385-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3385-4_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3384-7

  • Online ISBN: 978-1-0716-3385-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics