Skip to main content

Targeted Mutagenesis of Mycobacterium Strains by Homologous Recombination

  • Protocol
  • First Online:
Microbial Steroids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2704))

Abstract

Targeted mutagenesis by homologous recombination (TMHR) is an efficient allelic exchange mutagenesis for bacterial genome engineering in synthetic biology. Unlike other allelic exchange methods, TMHR does not require a heterologous recombinase to insert or excise a selectable marker from the genome. In contrast, positive and negative selection is achieved solely by suicide vector-encoded functional and host cell proteins. Here we describe a concise protocol to knock out and knock in a 3-ketosteroid-1,2-dehydrogenase gene (kstd) in Mycobacterium neoaurum HGMS2 using TMHR approach. The homology arms flanking the kstd gene are amplified by PCR in vitro and then subcloned into a common homologous recombination vector. The vector is then electroporated into the HGMS2 competent cells. The replacement of the kstd gene by homologous recombination produces antibiotic-resistant single-crossover recombination via the first allelic exchange. Double-crossover markerless mutants are directly separated using sucrose-mediated counterselection. These two steps can generate seamless mutations down to a single DNA base pair. The whole process takes less than 2 weeks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marques M, Carvalho F, Carvalho C, Cabral J, Fernandes P (2010) Steroid bioconversion: towards green processes. Food Bioprod Process 88:12–20

    Article  CAS  Google Scholar 

  2. Donova MV, Gulevskaya SA, Dovbnya DV, Puntus IF (2005) Mycobacterium sp. mutant strain producing 9α-hydroxyandrostenedione from sitosterol. Appl Microbiol Biotechnol 67:671–678

    Article  CAS  PubMed  Google Scholar 

  3. Wei W, Fan S, Wang F, Wei D (2010) A new steroid-transforming strain of Mycobacterium neoaurum and cloning of 3-ketosteroid 9α-hydroxylase in NwIB-01. Appl Microbiol Biotechnol 162:1446–1456

    CAS  Google Scholar 

  4. Donova MV, Egorova OV (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94:1423–1447

    Article  CAS  PubMed  Google Scholar 

  5. Lorena FC, Beatriz G, García J (2018) New insights on steroid biotechnology. Front Microbiol 9:958

    Article  Google Scholar 

  6. Gupta RS, Lo B, Son J (2019) Corrigendum: phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front Microbiol 10:714

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang H, Song S, Peng F, Yang F, Chen T, Li X, Cheng X, He Y, Huang Y, Su Z (2020) Whole-genome and enzymatic analyses of an androstenedione-producing Mycobacterium strain with residual phytosterol-degrading pathways. Microb Cell Factories 19:187

    Article  Google Scholar 

  8. Olivera ER, Luengo JM (2019) Steroids as environmental compounds recalcitrant to degradation: genetic mechanisms of bacterial biodegradation pathways. Genes 10:512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garcia JL, Uhia I, Galan B (2012) Catabolism and biotechnological applications of cholesterol degrading bacteria. Microb Biotechnol 5:679–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Capyk JK, Casabon I, Gruninger R, Strynadka NC, Eltis LD (2011) Activity of 3-ketosteroid 9alpha-hydroxylase (KshAB) indicates cholesterol side chain and ring degradation occur simultaneously in Mycobacterium tuberculosis. J Biol Chem 286:40717–40724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bragin EY, Shtratnikova VY, Schelkunov MI, Dovbnya DV, Donova MV (2019) Genome-wide response on phytosterol in 9-hydroxyandrostenedione-producing strain of Mycobacterium sp. VKM Ac-1817D. BMC Biotechnol 19:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu LQ, Liu YJ, Yao K, Liu HH, Tao XY, Wang FQ, Wei DZ (2016) Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism. Sci Rep 6:21928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thomas ST, VanderVen BC, Sherman DR, Russell DG, Sampson NS (2011) Pathway profiling in Mycobacterium tuberculosis: elucidation of cholesterol-derived catabolite and enzymes that catalyze its metabolism. J Biol Chem 286:43668–43678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li X, Chen T, Peng F, Song S, Yu J, Sidoine DN, Cheng X, Huang Y, He Y, Su Z (2021) Efficient conversion of phytosterols into 4-androstene-3,17-dione and its C1,2-dehydrogenized and 9alpha-hydroxylated derivatives by engineered mycobacteria. Microb Cell Factories 20:158

    Article  CAS  Google Scholar 

  15. Nesbitt NM, Yang X, Fontan P, Kolesnikova I, Smith I, Sampson NS, Dubnau E (2010) A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infect Immun 78:275–282

    Article  CAS  PubMed  Google Scholar 

  16. Thomas ST, Sampson NS (2013) Mycobacterium tuberculosis utilizes a unique heterotetrameric structure for dehydrogenation of the cholesterol side chain. Biochemistry 52:2895–2904

    Article  CAS  PubMed  Google Scholar 

  17. Yang M, Guja KE, Thomas ST, Garcia-Diaz M, Sampson NS (2014) A distinct MaoC-like enoyl-CoA hydratase architecture mediates cholesterol catabolism in Mycobacterium tuberculosis. ACS Chem Biol 9:2632–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Galan B, Uhia I, Garcia-Fernandez E, Martinez I, Bahillo E, de la Fuente JL, Barredo JL, Fernandez-Cabezon L, Garcia JL (2017) Mycobacterium smegmatis is a suitable cell factory for the production of steroidic synthons. Microb Biotechnol 10:138–150

    Article  CAS  PubMed  Google Scholar 

  19. Piddington DL, Fang FC, Laessig T, Cooper AM, Orme IM, Buchmeier NA (2001) Cu, Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect Immun 69:4980–4987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fu Y, Foden JA, Khayter C, Maeder ML, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Link AJ, Phillips D, Church GM (1997) Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179:6228–6237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Quandt J, Hynes MF (1993) Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene 127:15–21

    Article  CAS  PubMed  Google Scholar 

  23. Hoang TT, Karkhoff-Schweizer R, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86

    Article  CAS  PubMed  Google Scholar 

  24. Pelicic JM, Reyrat JM, Gicquel B (1996) Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. J Bacteriol 178:1197–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pelicic V, Reyrat JM, Gicquel B (2010) Generation of unmarked directed mutations in mycobacteria, using sucrose counter-selectable suicide vectors. Mol Microbiol 20:919–925

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Laboratory of Industrial Fermentation (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and Hubei Key Laboratory of Industrial Microbiology to Z.D.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengding Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Song, S., Su, Z. (2023). Targeted Mutagenesis of Mycobacterium Strains by Homologous Recombination. In: Barreiro, C., Barredo, JL. (eds) Microbial Steroids. Methods in Molecular Biology, vol 2704. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3385-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3385-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3384-7

  • Online ISBN: 978-1-0716-3385-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics