Skip to main content

Direct Stochastic Optical Reconstruction Microscopy (dSTORM) of Peroxisomes

  • Protocol
  • First Online:
Peroxisomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2643))

Abstract

Peroxisomes are central metabolic organelles whose maturation and function depend on efficient and accurate targeting of peroxisomal membrane proteins (PMPs). Ultrastructural imaging of the PMPs is a quite difficult task as it requires high spatial and temporal resolution. Further, the spatial resolution of conventional light microscopy is limited due to the diffraction of light. However, recent methodological developments in super resolution microscopy showed us to access the nanoscale regimes spatially allowing to elucidate the membrane structures of cell organelles. In this chapter, we present protocols used in our laboratory for the super-resolution imaging of the peroxisomal membrane protein 14 (PEX14p) by direct stochastic optical reconstruction microscopy (dSTORM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angermüller S, Fahimi HD (1981) Selective cytochemical localization of peroxidase, cytochrome oxidase and catalase in rat liver with 3,3′-diaminobenzidine. Histochemistry 71(1):33–44

    Article  PubMed  Google Scholar 

  2. Karnati S, Baumgart-Vogt E (2008) Peroxisomes in mouse and human lung: their involvement in pulmonary lipid metabolism. Histochem Cell Biol 130(4):719–740. https://doi.org/10.1007/s00418-008-0462-3

    Article  CAS  PubMed  Google Scholar 

  3. Watermann C, Meyer MT, Valerius KP, Kleefeldt F, Wagner S, Wittekindt C, Klussmann JP, Ergun S, Baumgart-Vogt E, Karnati S (2021) Peroxisomes in the mouse parotid glands: an in-depth morphological and molecular analysis. Ann Anat 238:151778. https://doi.org/10.1016/j.aanat.2021.151778

    Article  PubMed  Google Scholar 

  4. Karnati S, Baumgart-Vogt E (2009) Peroxisomes in airway epithelia and future prospects of these organelles for pulmonary cell biology. Histochem Cell Biol 131(4):447–454. https://doi.org/10.1007/s00418-009-0566-4

    Article  CAS  PubMed  Google Scholar 

  5. Qian G, Fan W, Ahlemeyer B, Karnati S, Baumgart-Vogt E (2015) Peroxisomes in different skeletal cell types during intramembranous and endochondral ossification and their regulation during osteoblast differentiation by distinct peroxisome proliferator-activated receptors. PLoS One 10(12):e0143439. https://doi.org/10.1371/journal.pone.0143439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grant P, Ahlemeyer B, Karnati S, Berg T, Stelzig I, Nenicu A, Kuchelmeister K, Crane DI, Baumgart-Vogt E (2013) The biogenesis protein PEX14 is an optimal marker for the identification and localization of peroxisomes in different cell types, tissues, and species in morphological studies. Histochem Cell Biol 140(4):423–442. https://doi.org/10.1007/s00418-013-1133-6

    Article  CAS  PubMed  Google Scholar 

  7. El-Merhie N, Baumgart-Vogt E, Pilatz A, Pfreimer S, Pfeiffer B, Pak O, Kosanovic D, Seimetz M, Schermuly RT, Weissmann N, Karnati S (2017) Differential alterations of the mitochondrial morphology and respiratory chain complexes during postnatal development of the mouse lung. Oxidative Med Cell Longev 2017:9169146. https://doi.org/10.1155/2017/9169146

    Article  CAS  Google Scholar 

  8. Oruqaj G, Karnati S, Vijayan V, Kotarkonda LK, Boateng E, Zhang W, Ruppert C, Gunther A, Shi W, Baumgart-Vogt E (2015) Compromised peroxisomes in idiopathic pulmonary fibrosis, a vicious cycle inducing a higher fibrotic response via TGF-beta signaling. Proc Natl Acad Sci U S A 112(16):E2048–E2057. https://doi.org/10.1073/pnas.1415111112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karnati S, Palaniswamy S, Alam MR, Oruqaj G, Stamme C, Baumgart-Vogt E (2016) C22-bronchial and T7-alveolar epithelial cell lines of the immortomouse are excellent murine cell culture model systems to study pulmonary peroxisome biology and metabolism. Histochem Cell Biol 145(3):287–304. https://doi.org/10.1007/s00418-015-1385-4

    Article  CAS  PubMed  Google Scholar 

  10. van de Linde S, Loschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, Sauer M (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6(7):991–1009. https://doi.org/10.1038/nprot.2011.336

    Article  CAS  PubMed  Google Scholar 

  11. Endesfelder U, Heilemann M (2015) Direct stochastic optical reconstruction microscopy (dSTORM). Methods Mol Biol 1251:263–276. https://doi.org/10.1007/978-1-4939-2080-8_14

    Article  CAS  PubMed  Google Scholar 

  12. Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed Engl 48(37):6903–6908. https://doi.org/10.1002/anie.200902073

    Article  CAS  PubMed  Google Scholar 

  13. Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47(33):6172–6176. https://doi.org/10.1002/anie.200802376

    Article  CAS  PubMed  Google Scholar 

  14. Ovesny M, Krizek P, Borkovec J, Svindrych Z, Hagen GM (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30(16):2389–2390. https://doi.org/10.1093/bioinformatics/btu202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wolter S, Loschberger A, Holm T, Aufmkolk S, Dabauvalle MC, van de Linde S, Sauer M (2012) rapidSTORM: accurate, fast open-source software for localization microscopy. Nat Methods 9(11):1040–1041. https://doi.org/10.1038/nmeth.2224

    Article  CAS  PubMed  Google Scholar 

  16. Sage D, Pham TA, Babcock H, Lukes T, Pengo T, Chao J, Velmurugan R, Herbert A, Agrawal A, Colabrese S, Wheeler A, Archetti A, Rieger B, Ober R, Hagen GM, Sibarita JB, Ries J, Henriques R, Unser M, Holden S (2019) Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software. Nat Methods 16(5):387–395. https://doi.org/10.1038/s41592-019-0364-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Benesch RE, Benesch R (1953) Enzymatic removal of oxygen for polarography and related methods. Science 118(3068):447–448. https://doi.org/10.1126/science.118.3068.447

    Article  CAS  PubMed  Google Scholar 

  18. Schafer P, van de Linde S, Lehmann J, Sauer M, Doose S (2013) Methylene blue- and thiol-based oxygen depletion for super-resolution imaging. Anal Chem 85(6):3393–3400. https://doi.org/10.1021/ac400035k

    Article  CAS  PubMed  Google Scholar 

  19. Uppoor R, Niebergall PJ (1996) Beta-D(+) glucose-glucose oxidase-catalase for use as an antioxidant system. Pharm Dev Technol 1(2):127–134. https://doi.org/10.3109/10837459609029887

    Article  CAS  PubMed  Google Scholar 

  20. van de Linde S, Wolter S, Heilemann M, Sauer M (2010) The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging. J Biotechnol 149(4):260–266. https://doi.org/10.1016/j.jbiotec.2010.02.010

    Article  CAS  PubMed  Google Scholar 

  21. Wolter S, Endesfelder U, van de Linde S, Heilemann M, Sauer M (2011) Measuring localization performance of super-resolution algorithms on very active samples. Opt Express 19(8):7020–7033. https://doi.org/10.1364/OE.19.007020

    Article  PubMed  Google Scholar 

  22. Nieuwenhuizen RPJ, Lidke KA, Bates M, Puig DL, Grünwald D, Stallinga S, Rieger B (2013) Measuring image resolution in optical nanoscopy. Nat Methods 10(6):557–562. https://doi.org/10.1038/nmeth.2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikanth Karnati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Klein, T., Sauer, M., Ergün, S., Karnati, S. (2023). Direct Stochastic Optical Reconstruction Microscopy (dSTORM) of Peroxisomes. In: Schrader, M. (eds) Peroxisomes. Methods in Molecular Biology, vol 2643. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3048-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3048-8_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3047-1

  • Online ISBN: 978-1-0716-3048-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics