Skip to main content

Immunolabeling for Detection of Endogenous and Overexpressed Peroxisomal Proteins in Mammalian Cells

  • Protocol
  • First Online:
Peroxisomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2643))

  • 665 Accesses

Abstract

Peroxisomes are dynamic subcellular organelles in mammals, playing essential roles in cellular lipid metabolism and redox homeostasis. They perform a wide spectrum of functions in human health and disease, with new roles, mechanisms, and regulatory pathways still being discovered. Recently elucidated biological roles of peroxisomes include as antiviral defense hubs, intracellular signaling platforms, immunomodulators, and protective organelles in sensory cells. Furthermore, peroxisomes are part of a complex inter-organelle interaction network, which involves metabolic cooperation and cross talk via membrane contacts. The detection of endogenous and/or overexpressed proteins within a cell by immunolabelling informs us about the organellar and even sub-organellar localization of both known and putative peroxisomal proteins. In turn, this can be exploited to characterize the effects of experimental manipulations on the morphology, distribution, and/or number of peroxisomes in a cell, which are key properties controlling peroxisome function. Here, we present a protocol used successfully in our laboratory for the immunolabelling of peroxisomal proteins in cultured mammalian cells. We present immunofluorescence and transfection techniques as well as reagents to determine the localization of endogenous and overexpressed peroxisomal proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schrader M, Costello JL, Godinho LF et al (2016) Proliferation and fission of peroxisomes – an update. Biochim Biophys Acta Mol Cell Res 1863:971–983

    Article  CAS  Google Scholar 

  2. Wanders RJA, Waterham HR (2006) Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332

    Article  CAS  PubMed  Google Scholar 

  3. Islinger M, Schrader M (2011) Peroxisomes. Curr Biol 21:R800–R801

    Article  CAS  PubMed  Google Scholar 

  4. Silva BSC, DiGiovanni L, Kumar R et al (2020) Maintaining social contacts: the physiological relevance of organelle interactions. Biochim Biophys Acta Mol Cell Res 1867:118800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sargsyan Y, Thoms S (2020) Staying in healthy contact: how peroxisomes interact with other cell organelles. Trends Mol Med 26(2):201–214

    Article  CAS  PubMed  Google Scholar 

  6. Ferreira AR, Marques M, Ramos B et al (2022) Emerging roles of peroxisomes in viral infections. Trends Cell Biol 32:124–139

    Article  CAS  PubMed  Google Scholar 

  7. Mast FD, Rachubinski RA, Aitchison JD (2015) Signaling dynamics and peroxisomes. Curr Opin Cell Biol 35:131–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fransen M, Lismont C (2018) Redox signaling from and to peroxisomes: progress, challenges, and prospects. Antioxid Redox Signal. https://doi.org/10.1089/ars.2018.7515

  9. Delmaghani S, Defourny J, Aghaie A et al (2015) Hypervulnerability to sound exposure through impaired adaptive proliferation of peroxisomes. Cell 163:894–906

    Article  CAS  PubMed  Google Scholar 

  10. Di Cara F, Savary S, Kovacs WJ et al (2022) The peroxisome: an up-and-coming organelle in immunometabolism. Trends Cell Biol S0962-8924(22):00140–00144

    Google Scholar 

  11. Yifrach E, Fischer S, Oeljeklaus S et al (2018) Defining the mammalian peroxisomal proteome. In: del Río LA, Schrader M (eds) Subcell Biochem. Springer, Singapore, pp 47–66

    Google Scholar 

  12. Yifrach E, Holbrook-Smith D, Bürgi J et al (2022) Systematic multi-level analysis of an organelle proteome reveals new peroxisomal functions. Mol Syst Biol 18:e11186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wiese S, Gronemeyer T, Ofman R et al (2007) Proteomics characterization of mouse kidney peroxisomes by tandem mass spectrometry and protein correlation profiling. Mol Cell Proteomics 6:2045–2057

    Article  CAS  PubMed  Google Scholar 

  14. Gronemeyer T, Wiese S, Ofman R et al (2013) The proteome of human liver peroxisomes: identification of five new peroxisomal constituents by a label-free quantitative proteomics survey. PLoS One 8:e57395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Islinger M, Lüers GH, Zischka H et al (2006) Insights into the membrane proteome of rat liver peroxisomes: microsomal glutathione-S-transferase is shared by both subcellular compartments. Proteomics 6:804–816

    Article  CAS  PubMed  Google Scholar 

  16. Koch A, Thiemann M, Grabenbauer M et al (2003) Dynamin-like protein 1 is involved in peroxisomal fission. J Biol Chem 278:8597–8605

    Article  CAS  PubMed  Google Scholar 

  17. Koch A, Yoon Y, Bonekamp NA et al (2005) A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 16:5077–5086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Costello JL, Schrader M (2018) Unloosing the Gordian knot of peroxisome formation. Curr Opin Cell Biol 50:50–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Islinger M, Lüers GH, Li KW et al (2007) Rat liver peroxisomes after fibrate treatment. A survey using quantitative mass spectrometry. J Biol Chem 282:23055–23069

    Article  CAS  PubMed  Google Scholar 

  20. Dastig S, Nenicu A, Otte DM et al (2011) Germ cells of male mice express genes for peroxisomal metabolic pathways implicated in the regulation of spermatogenesis and the protection against oxidative stress. Histochem Cell Biol 136:413–425

    Article  CAS  PubMed  Google Scholar 

  21. Karnati S, Baumgart-Vogt E (2009) Peroxisomes in airway epithelia and future prospects of these organelles for pulmonary cell biology. Histochem Cell Biol 131:447–454

    Article  CAS  PubMed  Google Scholar 

  22. Islinger M, Cardoso MJ, Schrader M (2010) Be different--the diversity of peroxisomes in the animal kingdom. Biochim Biophys Acta 1803:881–897

    Google Scholar 

  23. Grzmil P, Burfeind C, Preuss T et al (2007) The putative peroxisomal gene Pxt1 is exclusively expressed in the testis. Cytogenet Genome Res 119:74–82

    Article  CAS  PubMed  Google Scholar 

  24. Kaczmarek K, Niedzialkowska E, Studencka M et al (2009) Ccdc33, a predominantly testis-expressed gene, encodes a putative peroxisomal protein. Cytogenet Genome Res 126:243–252

    Article  CAS  PubMed  Google Scholar 

  25. Carmichael RE, Schrader M (2022) Determinants of peroxisome membrane dynamics. Front Physiol 13:834411

    Article  PubMed  PubMed Central  Google Scholar 

  26. Carmichael RE, Islinger M, Schrader M (2022) Fission impossible (?)-new insights into disorders of peroxisome dynamics. Cells 11:1922

    Google Scholar 

  27. Schrader TA, Carmichael RE, Islinger M et al (2022) PEX11β and FIS1 cooperate in peroxisome division independent of Mitochondrial Fission Factor. J Cell Sci 135:jcs259924

    Google Scholar 

  28. Castro IG, Richards DM, Metz J et al (2018) A role for Mitochondrial Rho GTPase 1 (MIRO1) in motility and membrane dynamics of peroxisomes. Traffic 19:229–242

    Google Scholar 

  29. Azadi AS, Carmichael RE, Kovacs WJ et al (2020) A functional SMAD2/3 binding site in the PEX11β promoter identifies a role for TGFβ in peroxisome proliferation in humans. Front Cell Dev Biol 8:577637

    Article  PubMed  PubMed Central  Google Scholar 

  30. Honsho M, Abe Y, Imoto Y et al (2020) Mammalian homologue NME3 of DYNAMO1 regulates peroxisome division. Int J Mol Sci 21(21):8040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shamseldin HE, Alshammari M, Al-Sheddi T et al (2012) Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes. J Med Genet 49:234–241

    Article  PubMed  Google Scholar 

  32. Delille HK, Agricola B, Guimaraes SC et al (2010) Pex11pbeta-mediated growth and division of mammalian peroxisomes follows a maturation pathway. J Cell Sci 123:2750–2762

    Article  CAS  PubMed  Google Scholar 

  33. Grant P, Ahlemeyer B, Karnati S et al (2013) The biogenesis protein PEX14 is an optimal marker for the identification and localization of peroxisomes in different cell types, tissues, and species in morphological studies. Histochem Cell Biol 140:423–442

    Article  CAS  PubMed  Google Scholar 

  34. Passmore JB, Carmichael RE, Schrader TA et al (2020) Mitochondrial fission factor (MFF) is a critical regulator of peroxisome maturation. Biochim Biophys Acta Mol Cell Res 867(7):118709

    Article  Google Scholar 

  35. Camões F, Islinger M, Guimarães SC et al (2015) New insights into the peroxisomal protein inventory: Acyl-CoA oxidases and -dehydrogenases are an ancient feature of peroxisomes. Biochim Biophys Acta 1853:111–125

    Article  PubMed  Google Scholar 

  36. Schrader M, Baumgart E, Volkl A et al (1994) Heterogeneity of peroxisomes in human hepatoblastoma cell line HepG2. Evidence of distinct subpopulations. Eur J Cell Biol 64:281–294

    CAS  PubMed  Google Scholar 

  37. Schrader M (2001) Tubulo – reticular clusters of peroxisomes in living COS-7 cells: dynamic behavior and association with lipid droplets. J Histochem Cytochem 49:1421–1429

    Article  CAS  PubMed  Google Scholar 

  38. Schrader TA, Islinger M, Schrader M (2017) Detection and immunolabeling of peroxisomal proteins. In: Schrader M (ed) Methods in molecular biology (Clifton, N.J.). Springer, New York, pp 113–130

    Google Scholar 

  39. Schrader M, Reuber BE, Morrell JC et al (1998) Expression of PEX11beta mediates peroxisome proliferation in the absence of extracellular stimuli. J Biol Chem 273:29607–29614

    Article  CAS  PubMed  Google Scholar 

  40. Schrader TA, Schrader M (2017) siRNA-mediated silencing of peroxisomal genes in mammalian cells. In: Schrader M (ed) Methods in molecular biology (Clifton, N.J.). Springer, New York, pp 69–79

    Google Scholar 

  41. Aroso M, Agricola B, Hacker C et al (2015) Proteoglycans support proper granule formation in pancreatic acinar cells. Histochem Cell Biol 144:331–346

    Article  CAS  PubMed  Google Scholar 

  42. Brees C, Fransen M (2014) A cost-effective approach to microporate mammalian cells with the Neon Transfection System. Anal Biochem 466:49–50

    Article  CAS  PubMed  Google Scholar 

  43. Schrader M, Baumgart E, Fahimi HD (1995) Effects of fixation on the preservation of peroxisomal structures for immunofluorescence studies using HepG2 cells as a model system. Histochem J 27:615–619

    Article  CAS  PubMed  Google Scholar 

  44. Peranen J, Rikkonen M, Kaariainen L (1993) A method for exposing hidden antigenic sites in paraformaldehyde-fixed cultured cells, applied to initially unreactive antibodies. J Histochem Cytochem 41:447–454

    Article  CAS  PubMed  Google Scholar 

  45. Schrader M, Almeida M, Grille S (2012) Postfixation detergent treatment liberates the membrane modelling protein Pex11beta from peroxisomal membranes. Histochem Cell Biol 138:541–547

    Article  CAS  PubMed  Google Scholar 

  46. Bonekamp NA, Grille S, Cardoso MJ et al (2013) Self-interaction of human Pex11pbeta during peroxisomal growth and division. PLoS One 8:e53424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Biotechnology and Biological Sciences Research Council (BB/R016844/1; BB/T002255/1; BB/W015420/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schrader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schrader, T.A., Carmichael, R.E., Schrader, M. (2023). Immunolabeling for Detection of Endogenous and Overexpressed Peroxisomal Proteins in Mammalian Cells. In: Schrader, M. (eds) Peroxisomes. Methods in Molecular Biology, vol 2643. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3048-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3048-8_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3047-1

  • Online ISBN: 978-1-0716-3048-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics