Skip to main content

Quantitative Measurement of Ascorbate and Glutathione by Spectrophotometry

  • Protocol
  • First Online:
Reactive Oxygen Species in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2526))

Abstract

Ascorbate and glutathione are key chemical antioxidants present at relatively high concentrations in plant cells. They are also reducing cofactors for enzymes that process hydrogen peroxide in the ascorbate-glutathione pathway. Due to these two related biochemical functions, the compounds form an interface between reactive oxygen species and sensitive cellular components. Therefore, their status can provide reliable and direct information on cell redox state, signaling, and plant health. While several methods exist for quantification of ascorbate and glutathione, simple enzyme-dependent assays allow them to be measured easily and inexpensively in common extracts. This chapter describes a protocol to measure total contents, as well as the major oxidized and reduced forms, of both compounds in plant tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  Google Scholar 

  2. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  Google Scholar 

  3. Noctor G, Mhamdi A, Foyer CH (2016) Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. Plant Cell Environ 39:1140–1160

    Article  CAS  Google Scholar 

  4. Vernoux T, Wilson RC, Seeley KA et al (2000) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–110

    Article  CAS  Google Scholar 

  5. Vanacker H, Carver TLW, Foyer CH (2000) Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hypersensitive response in the barley-powdery mildew interaction. Plant Physiol 123:1289–1300

    Article  CAS  Google Scholar 

  6. Pastori GM, Kiddle G, Antoniw J et al (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signalling. Plant Cell 15:939–951

    Article  CAS  Google Scholar 

  7. Frendo P, Harrison J, Norman C et al (2005) Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula. Mol Plant Microb Interact 18:254–259

    Article  CAS  Google Scholar 

  8. Cairns NG, Pasternak M, Wachter A et al (2006) Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol 141:446–455

    Article  CAS  Google Scholar 

  9. Dowdle J, Ishikawa T, Gatzek S et al (2007) Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 52:673–689

    Article  CAS  Google Scholar 

  10. Mhamdi A, Hager J, Chaouch S et al (2010) Arabidopsis GLUTATHIONE REDUCTASE 1 is essential for the metabolism of intracellular H2O2 and to enable appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol 153:1144–1160

    Article  CAS  Google Scholar 

  11. Han Y, Chaouch S, Mhamdi A et al (2013) Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling. Antioxid Redox Signal 18:2106–2121

    Article  CAS  Google Scholar 

  12. Rahantaniana MS, Li S, Chatel-Innocenti G et al (2017) Cytosolic and chloroplastic DHARs cooperate in the induction of the salicylic acid pathway by oxidative stress. Plant Physiol 174:956–971

    Article  Google Scholar 

  13. Hewitt EJ, Dickes GJ (1961) Spectrophotometric measurements on ascorbic acid and their use for the estimation of ascorbic acid and dehydroascorbic acid in plant tissues. Biochem J 78:384–391

    Article  CAS  Google Scholar 

  14. Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidised glutathione. Applications to mammalian blood and other tissues. Anal Biochem 27:502–522

    Article  CAS  Google Scholar 

  15. Foyer C, Rowell J, Walker D (1983) Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta 157:239–244

    Article  CAS  Google Scholar 

  16. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  CAS  Google Scholar 

  17. Strohm M, Jouanin L, Kunert KJ et al (1995) Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula × P. alba) overexpressing glutathione synthetase. Plant J 7:141–145

    Article  CAS  Google Scholar 

  18. Noctor G, Foyer CH (1998) Simultaneous measurement of foliar glutathione, γ-glutamylcysteine, and amino acids by high-performance liquid chromatography: comparison with the two other assay methods for glutathione. Anal Biochem 264:98–110

    Article  CAS  Google Scholar 

  19. Queval G, Noctor G (2007) A plate-reader method for the measurement of NAD, NADP, glutathione and ascorbate in tissue extracts. Application to redox profiling during Arabidopsis rosette development. Anal Biochem 363:58–69

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work in the GN laboratory is supported by the French Agence Nationale de la Recherche HIPATH project (ANR-17-CE20-0025) and by the Institut Universitaire de France (IUF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Noctor .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplementary Table 1

Data processing glutathione and ascorbate (XLS 55 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Noctor, G., Mhamdi, A. (2022). Quantitative Measurement of Ascorbate and Glutathione by Spectrophotometry. In: Mhamdi, A. (eds) Reactive Oxygen Species in Plants. Methods in Molecular Biology, vol 2526. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2469-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2469-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2468-5

  • Online ISBN: 978-1-0716-2469-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics