Skip to main content

PBPK Modeling to Simulate the Fate of Compounds in Living Organisms

  • Protocol
  • First Online:
In Silico Methods for Predicting Drug Toxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2425))

Abstract

Pharmacokinetics study the fate of xenobiotics in a living organism. Physiologically based pharmacokinetic (PBPK) models provide realistic descriptions of xenobiotics’ absorption, distribution, metabolism, and excretion processes. They model the body as a set of homogeneous compartments representing organs, and their parameters refer to anatomical, physiological, biochemical, and physicochemical entities. They offer a quantitative mechanistic framework to understand and simulate the time-course of the concentration of a substance in various organs and body fluids. These models are well suited for performing extrapolations inherent to toxicology and pharmacology (e.g., between species or doses) and for integrating data obtained from various sources (e.g., in vitro or in vivo experiments, structure–activity models). In this chapter, we describe the practical development and basic use of a PBPK model from model building to model simulations, through implementation with an easily accessible free software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haggard HW (1924) The absorption, distribution, and elimination of ethyl ether. I. The amount of ether absorbed in relation to the concentration inhaled and its fate in the body. J Biol Chem 59:737–751

    Article  CAS  Google Scholar 

  2. Haggard HW (1924) The absorption, distribution, and elimination of ethyl ether. II. Analysis of the mechanism of absorption and elimination of such a gas or vapor as ethyl ether. J Biol Chem 59:753–770

    Article  CAS  Google Scholar 

  3. Haggard HW (1924) The absorption, distribution, and elimination of ethyl ether. III. The relation of the concentration of ether, or any similar volatile substance, in the central nervous system to the concentration in the arterial blood, and the buffer action of the body. J Biol Chem 59:771–781

    Article  CAS  Google Scholar 

  4. Haggard HW (1924) The absorption, distribution, and elimination of ethyl ether. IV. The anesthetic tension of ether and the physiological response to various concentrations. J Biol Chem 59:783–793

    Article  CAS  Google Scholar 

  5. Haggard HW (1924) The absorption, distribution, and elimination of ethyl ether. V. The importance of the volume of breathing during the induction and termination of ether anesthesia. J Biol Chem 59:795–802

    Article  CAS  Google Scholar 

  6. Teorell T (1937) Kinetics of distribution of substances administered to the body. Arch Int Pharmacodyn Ther 57:205–240

    CAS  Google Scholar 

  7. Gibaldi M, Perrier D (1982) Pharmacokinetics, second edition, revised and expanded. Marcel Dekker, New York

    Google Scholar 

  8. Bischoff KB, Dedrick RL, Zaharko DS et al (1971) Methotrexate pharmacokinetics. J Pharm Sci 60:1128–1133

    Article  CAS  PubMed  Google Scholar 

  9. Dedrick RL, Forrester DD, Cannon JN et al (1973) Pharmacokinetics of 1-beta-D-arabinofuranosylcytosine (ARA-C) deamination in several species. Biochem Pharmacol 22:2405–2417

    Article  CAS  PubMed  Google Scholar 

  10. Droz PO, Guillemin MP (1983) Human styrene exposure .5. Development of a model for biological monitoring. Int Arch Occup Environ Health 53(1):19–36

    Article  CAS  PubMed  Google Scholar 

  11. Gerlowski LE, Jain RK (1983) Physiologically based pharmacokinetic modeling: principles and applications. J Pharm Sci 72:1103–1127

    Article  CAS  PubMed  Google Scholar 

  12. Lutz RJ, Dedrick RL, Tuey D et al (1984) Comparison of the pharmacokinetics of several polychlorinated-biphenyls in mouse, rat, dog, and monkey by means of a physiological pharmacokinetic model. Drug Metab Dispos 12(5):527–535

    CAS  PubMed  Google Scholar 

  13. Rowland M, Peck C, Tucker G (2011) Physiologically-based pharmacokinetics in drug Development and regulatory science. Annu Rev Pharmacol Toxicol 51:45–73

    Article  CAS  PubMed  Google Scholar 

  14. Nestorov I, Aarons L, Rowland M (1998) Quantitative structure-pharmacokinetics relationships: II. A mechanistically based model to evaluate the relationship between tissue distribution parameters and compound lipophilicity. J Pharmacokinet Biopharm 26(5):521–545

    Article  CAS  PubMed  Google Scholar 

  15. Peyret T, Poulin P, Krishnan K (2010) A unified algorithm for predicting partition coefficients for PBPK modeling of drugs and environmental chemicals. Toxicol Appl Pharmacol 249(3):197–207

    Article  CAS  PubMed  Google Scholar 

  16. Beaudouin R, Micallef S, Brochot C (2010) A stochastic whole-body physiologically based pharmacokinetic model to assess the impact of inter-individual variability on tissue dosimetry over the human lifespan. Regul Toxicol Pharmacol 57(1):103–116

    Article  CAS  PubMed  Google Scholar 

  17. Clewell HJ, Gentry PR, Covington TR et al (2004) Evaluation of the potential impact of age- and gender-specific pharmacokinetic differences on tissue dosimetry. Toxicol Sci 79(2):381–393

    Article  CAS  PubMed  Google Scholar 

  18. Jones HM, Parrott N, Jorga K et al (2006) A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet 45(5):511–542

    Article  CAS  PubMed  Google Scholar 

  19. International Programme on Chemical Safety (IPCS) (2010) Characterization and application of physiologically based pharmacokinetic models in risk assessment. World Health Organization, Geneva

    Google Scholar 

  20. United States Environmental Protection Agency (US EPA) (2006) Approaches for the application of physiologically based pharmacokinetic (PBPK) models and supporting data in risk assessment. US EPA, Washington, DC, USA

    Google Scholar 

  21. Peters SA (2011) Physiologically based pharmacokinetic (PBPK) modeling and simulations: principles, methods, and applications in the pharmaceutical industry. Wiley, Hoboken, N.J

    Google Scholar 

  22. Andersen ME (1995) What do we mean by dose? Inhal Toxicol 7(6):909–915

    Article  CAS  Google Scholar 

  23. Clewell HJ, Tan YM, Campbell JL et al (2008) Quantitative interpretation of human biomonitoring data. Toxicol Appl Pharmacol 231(1):122–133

    Article  CAS  PubMed  Google Scholar 

  24. Ulaszewska MM, Ciffroy P, Tahraoui F et al (2012) Interpreting PCB levels in breast milk using a physiologically based pharmacokinetic model to reconstruct the dynamic exposure of Italian women. J Expo Sci Environ Epidemiol 22(6):601–609

    Article  CAS  PubMed  Google Scholar 

  25. Zeman FA, Boudet C, Tack K et al (2013) Exposure assessment of phthalates in French pregnant women: results of the ELFE pilot study. Int J Hyg Environ Health 216(3):271–279

    Article  CAS  PubMed  Google Scholar 

  26. Organisation for Economic Co-operation and Development (OECD) (2021) Guidance document on the characterisation, validation and reporting of Physiologically Based Kinetic (PBK) models for regulatory purposes. In: OECD Series on Testing and Assessment, No. 331, Environment, Health and Safety, Environment Directorate. OECD, Paris

    Google Scholar 

  27. Andersen ME (1995) Development of physiologically based pharmacokinetic and physiologically based pharmacodynamic models for applications in toxicology and risk assessment. Toxicol Lett 79:35–44

    Article  CAS  PubMed  Google Scholar 

  28. Barton HA, Chiu WA, Setzer RW et al (2007) Characterizing uncertainty and variability in physiologically based pharmacokinetic models: state of the science and needs for research and implementation. Toxicol Sci 99(2):395–402

    Article  CAS  PubMed  Google Scholar 

  29. Loizou G, Spendiff M, Barton HA et al (2008) Development of good modelling practice for physiologically based pharmacokinetic models for use in risk assessment: the first steps. Regul Toxicol Pharmacol 50(3):400–411

    Article  CAS  PubMed  Google Scholar 

  30. Campbell JL Jr, Clewell RA, Gentry PR et al (2012) Physiologically based pharmacokinetic/toxicokinetic modeling. Methods Mol Biol 929:439–499

    Article  CAS  PubMed  Google Scholar 

  31. Clewell RA, Clewell HJ (2008) Development and specification of physiologically based pharmacokinetic models for use in risk assessment. Regul Toxicol Pharmacol 50(1):129–143

    Article  CAS  PubMed  Google Scholar 

  32. Thompson MD, Beard DA (2011) Development of appropriate equations for physiologically based pharmacokinetic modeling of permeability-limited and flow-limited transport. J Pharmacokinet Pharmacodyn 38(4):405–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brown RP, Delp MD, Lindstedt SL et al (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13(4):407–484

    Article  CAS  PubMed  Google Scholar 

  34. Davis B, Morris T (1993) Physiological parameters in laboratory animals and human. Pharm Res 10(7):1093–1095

    Article  Google Scholar 

  35. International Commission on Radiological Protection (ICRP) (2002) Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89. Annals of the ICRP 32(3/4)

    Google Scholar 

  36. International Commission on Radiological Protection (ICRP) (1975) No. 23: Report of the Task Group on Reference Man. Pergamon Press, New York

    Google Scholar 

  37. Young JF, Branham WS, Sheenan DM et al (1997) Physiological “constants” for PBPK models for pregnancy. J Toxicol Environ Health 52:385–401

    CAS  PubMed  Google Scholar 

  38. Ekins S, Waller CL, Swaan PW et al (2000) Progress in predicting human ADME parameters in silico. J Pharmacol Toxicol Methods 44(1):251–272

    Article  CAS  PubMed  Google Scholar 

  39. Poulin P, Haddad S (2012) Advancing prediction of tissue distribution and volume of distribution of highly lipophilic compounds from a simplified tissue-composition-based model as a mechanistic animal alternative method. J Pharm Sci 101(6):2250–2261

    Article  CAS  PubMed  Google Scholar 

  40. Cappelli CI, Manganelli S, Toma C et al (2021) Prediction of the partition coefficient between adipose tissue and blood for environmental chemicals: from single QSAR models to an integrated approach. Mol Inform 40(3):e2000072

    Article  PubMed  Google Scholar 

  41. Buch I, Giorgino T, De Fabritiis G (2011) Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc Natl Acad Sci U S A 108(25):10184–10189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Butina D, Segall MD, Frankcombe K (2002) Predicting ADME properties in silico: methods and models. Drug Discov Today 7(11):S83–S88

    Article  CAS  PubMed  Google Scholar 

  43. Fiserova-Bergerova V, Diaz ML (1986) Determination and prediction of tissue-gas partition-coefficients. Int Arch Occup Environ Health 58(1):75–87

    Article  CAS  PubMed  Google Scholar 

  44. Gargas ML, Seybold PG, Andersen ME (1988) Modeling the tissue solubilities and metabolic-rate constant (VMAX) of halogenated methanes, ethanes, and ethylenes. Toxicol Lett 43(1–3):235–256

    Article  CAS  PubMed  Google Scholar 

  45. Poulin P, Ekins S, Theil FP (2011) A hybrid approach to advancing quantitative prediction of tissue distribution of basic drugs in human. Toxicol Appl Pharmacol 250(2):194–212

    Article  CAS  PubMed  Google Scholar 

  46. Poulin P, Theil FP (2000) A priori prediction of tissue : plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J Pharm Sci 89(1):16–35

    Article  CAS  PubMed  Google Scholar 

  47. Adler S, Basketter D, Creton S et al (2011) Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 85(5):367–485

    Article  CAS  PubMed  Google Scholar 

  48. Bal-Price A, Jennings P (2014) In vitro toxicology systems. Humana Press, New York, NY, USA

    Book  Google Scholar 

  49. Fisher C, Simeon S, Jamei M et al (2019) VIVD: virtual in vitro distribution model for the mechanistic prediction of intracellular concentrations of chemicals in in vitro toxicity assays. Toxicol In Vitro 58:42–50

    Article  CAS  PubMed  Google Scholar 

  50. Ouattara DA, Choi SH, Sakai Y et al (2011) Kinetic modelling of in vitro cell-based assays to characterize non-specific bindings and ADME processes in a static and a perfused fluidic system. Toxicol Lett 205(3):310–319

    Article  CAS  PubMed  Google Scholar 

  51. Bois FY, Jamei M (2012) Population-based pharmacokinetic modeling and simulation. In: Lyubimov AV (ed) Encyclopedia of drug metabolism and interactions. John Wiley & sons, Hoboken, pp 1–27

    Google Scholar 

  52. Bernillon P, Bois FY (2000) Statistical issues in toxicokinetic modeling: a Bayesian perspective. Environ Health Perspect 108:883–893

    Article  CAS  PubMed  Google Scholar 

  53. Yuh L, Beal S, Davidian M et al (1994) Population pharmacokinetic-pharmacodynamic methodology and applications - a bibliography. Biometrics 50(2):566–575

    Article  CAS  PubMed  Google Scholar 

  54. Gelman A, Bois FY, Jiang J (1996) Physiological pharmacokinetic analysis using population modeling and informative prior distributions. J Am Stat Assoc 91(436):1400–1412

    Article  Google Scholar 

  55. Bois FY, Jamei M, Clewell HJ (2010) PBPK modelling of inter-individual variability in the pharmacokinetics of environmental chemicals. Toxicology 278(3):256–267

    Article  CAS  PubMed  Google Scholar 

  56. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  57. Bois FY (2009) GNU MCSim: Bayesian statistical inference for SBML-coded systems biology models. Bioinformatics 25(11):1453–1454

    Article  CAS  PubMed  Google Scholar 

  58. GNU MCSim. http://www.gnu.org/software/mcsim/

  59. GNU Octave. http://www.gnu.org/software/octave/

  60. Scilab. http://www.scilab.org/

  61. MATLAB and Simulink for Technical Computing—MathWorks. http://mathworks.com/

  62. Wolfram Mathematica Definitive System for Modern Technical Computing. http://www.wolfram.com/mathematica/

  63. Bayer Technology Services: PK-Sim®. http://www.systems-biology.com/products/pk-sim.html

  64. Simcyp Population Based Pharmacokinetic Modelling and Simulation. http://www.simcyp.com/

  65. Simulations Plus Inc|Modeling & Simulation Software|Consulting Services for Pharmaceutical Research. http://www.simulations-plus.com/

  66. MERLIN-Expo|Exposure Assessment Software. http://merlin-expo.4funproject.eu/

  67. Brochot C, Quindroit P (2018) Modelling the fate of Chemicals in Humans Using a lifetime physiologically based pharmacokinetic (PBPK) model in MERLIN-expo. In: Ciffroy P, Tediosi A, Capri E (eds) Modelling the fate of chemicals in the environment and the human body. Springer International Publishing, New York City, pp 215–257

    Chapter  Google Scholar 

  68. Tebby C, van der Voet H, de Sousa G et al (2020) A generic PBTK model implemented in the MCRA platform: predictive performance and uses in risk assessment of chemicals. Food Chem Toxicol 142:111440

    Article  CAS  PubMed  Google Scholar 

  69. van der Voet H, Kruisselbrink JW, de Boer WJ et al (2020) The MCRA toolbox of models and data to support chemical mixture risk assessment. Food Chem Toxicol 138:111185

    Article  PubMed  Google Scholar 

  70. Bois FY (2010) Physiologically based modelling and prediction of drug interactions. Basic Clin Pharmacol Toxicol 106(3):154–161

    Article  CAS  PubMed  Google Scholar 

  71. Kirman CR, Albertini RJ, Sweeney LM et al (2010) 1,3-butadiene: I. review of metabolism and the implications to human health risk assessment. Crit Rev Toxicol 40:1–11

    Article  CAS  PubMed  Google Scholar 

  72. United States Environmental Protection Agency (US EPA) (2002) Health Assessment of 1,3-Butadiene. United States Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Washington, DC, USA

    Google Scholar 

  73. Bois FY (2012) Bayesian inference. In: Reisfeld B, Mayeno AN (eds) Computational toxicology, vol II. Humana Press, New York, USA, pp 597–636

    Google Scholar 

  74. Bois FY, Smith TJ, Gelman A et al (1999) Optimal design for a study of butadiene toxicokinetics in humans. Toxicol Sci 49(2):213–224

    Article  CAS  PubMed  Google Scholar 

  75. Mezzetti M, Ibrahim JG, Bois FY et al (2003) A Bayesian compartmental model for the evaluation of 1,3-butadiene metabolism. J R Stat Soc Ser C Appl Stat 52:291–305

    Article  Google Scholar 

  76. Brochot C, Smith TJ, Bois FY (2007) Development of a physiologically based toxicokinetic model for butadiene and four major metabolites in humans: global sensitivity analysis for experimental design issues. Chem Biol Interact 167(3):168–183

    Article  CAS  PubMed  Google Scholar 

  77. Deurenberg P, Weststrate JA, Seidell JC (1991) Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. Br J Nutr 65(2):105–114

    Article  CAS  PubMed  Google Scholar 

  78. Byrne GD, Hindmarsh AC (1987) Stiff ODE solvers - a review of current and coming attractions. J Comput Phys 70(1):1–62

    Article  Google Scholar 

  79. Caldwell JC, Evans MV, Krishnan K (2012) Cutting edge PBPK models and analyses: providing the basis for future modeling efforts and bridges to emerging toxicology paradigms. J Toxicol 2012:852384

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhao P, Zhang L, Grillo JA et al (2011) Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther 89(2):259–267

    Article  CAS  PubMed  Google Scholar 

  81. Zhao P, Rowland M, Huang SM (2012) Best practice in the use of physiologically based pharmacokinetic modeling and simulation to address clinical pharmacology regulatory questions. Clin Pharmacol Ther 92(1):17–20

    Article  CAS  PubMed  Google Scholar 

  82. Rostami-Hodjegan A, Tamai I, Pang KS (2012) Physiologically based pharmacokinetic (PBPK) modeling: it is here to stay! Biopharm Drug Dispos 33(2):47–50

    Article  CAS  PubMed  Google Scholar 

  83. Geenen S, Yates JWT, Kenna JG et al (2013) Multiscale modelling approach combining a kinetic model of glutathione metabolism with PBPK models of paracetamol and the potential glutathione-depletion biomarkers ophthalmic acid and 5-oxoproline in humans and rats. Integr Biol 5(6):877–888

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the European Commission, seventh FP project 4-FUN (grant agreement 308440) and the French Ministry for the Environment (Programme 190 toxicologie).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Y. Bois .

Editor information

Editors and Affiliations

Appendix 1

Appendix 1

R script for the butadiene PBPK model:

#================================================================= # Butadiene human PBPK model # Define and initialize the state variables y = c("Q_fat" = 0, # Quantity of butadiene in fat (mg) "Q_wp" = 0, # ~ in well-perfused (mg) "Q_pp" = 0, # ~ in poorly-perfused (mg) "Q_met" = 0) # ~ metabolized (mg) # Define the model parameters # Units: # Volumes: liter # Time: minute # Flows: liter / minute parameters = c( "BDM" = 73, # Body mass (kg) "Height" = 1.6, # Body height (m) "Age" = 40, # in years "Sex" = 1, # code 1 is male, 2 is female "Flow_pul" = 5, # Pulmonary ventilation rate (L/min) "Pct_Deadspace" = 0.7, # Fraction of pulmonary deadspace "Vent_Perf" = 1.14, # Ventilation over perfusion ratio "Pct_LBDM_wp" = 0.2, # wp tissue as fraction of lean mass "Pct_Flow_fat" = 0.1, # Fraction of cardiac output to fat "Pct_Flow_pp" = 0.35, # ~ to pp "PC_art" = 2, # Blood/air partition coefficient "PC_fat" = 22, # Fat/blood ~ "PC_wp" = 0.8, # wp/blood ~ "PC_pp" = 0.8, # pp/blood ~ "Kmetwp" = 0.25) # Rate constant for metabolism (1/min) # The input air concentration (in parts per million) can vary with time C_inh = approxfun(x = c(0,120), y = c(10,0), method="constant", f=0, rule=2) # Check the input concentration profile just defined plot(C_inh(1:300), xlab = "Time (min)", ylab = "Butadiene air concentration (ppm)", type = "l") # Define the model equations bd.model = function(t, y, parameters) { with (as.list(y), { with (as.list(parameters), { # Define some useful constants MW_bu = 54.0914 # butadiene molecular weight (in grams) ppm_per_mM = 24450 # ppm to mM under normal conditions # Conversions from/to ppm ppm_per_mg_per_l = ppm_per_mM / MW_bu mg_per_l_per_ppm = 1 / ppm_per_mg_per_l # Calculate Flow_alv from total pulmonary flow Flow_alv = Flow_pul * (1 - Pct_Deadspace) # Calculate total blood flow from Flow_alv and the V/P ratio Flow_tot = Flow_alv / Vent_Perf # Calculate fraction of body fat Pct_BDM_fat = (1.2 * BDM / (Height * Height) - 10.8 *(2 - Sex) + 0.23 * Age - 5.4) * 0.01 # Actual volumes, 10% of body mass (bones...) get no butadiene Eff_V_fat = Pct_BDM_fat * BDM Eff_V_wp = Pct_LBDM_wp * BDM * (1 - Pct_BDM_fat) Eff_V_pp = 0.9 * BDM - Eff_V_fat - Eff_V_wp # Calculate actual blood flows from total flow and percent flows Flow_fat = Pct_Flow_fat * Flow_tot Flow_pp = Pct_Flow_pp * Flow_tot Flow_wp = Flow_tot * (1 - Pct_Flow_pp - Pct_Flow_fat) # Calculate the concentrations C_fat = Q_fat / Eff_V_fat C_wp = Q_wp / Eff_V_wp C_pp = Q_pp / Eff_V_pp # Venous blood concentrations at the organ exit Cout_fat = C_fat / PC_fat Cout_wp = C_wp / PC_wp Cout_pp = C_pp / PC_pp # Sum of Flow * Concentration for all compartments dQ_ven = Flow_fat * Cout_fat + Flow_wp * Cout_wp + Flow_pp * Cout_pp C_inh.current = C_inh(t) # to avoid calling C_inh() twice # Arterial blood concentration # Convert input given in ppm to mg/l to match other units C_art = (Flow_alv * C_inh.current * mg_per_l_per_ppm + dQ_ven) / (Flow_tot + Flow_alv / PC_art) # Venous blood concentration (mg/L) C_ven = dQ_ven / Flow_tot # Alveolar air concentration (mg/L) C_alv = C_art / PC_art # Exhaled air concentration (ppm!) if (C_alv <= 0) { C_exh = 10E-30 # avoid round off errors } else { C_exh = (1 - Pct_Deadspace) * C_alv * ppm_per_mg_per_l + Pct_Deadspace * C_inh.current } # Quantity metabolized in liver (included in well-perfused) dQmet_wp = Kmetwp * Q_wp # Differentials for quantities dQ_fat = Flow_fat * (C_art - Cout_fat) dQ_wp = Flow_wp * (C_art - Cout_wp) - dQmet_wp dQ_pp = Flow_pp * (C_art - Cout_pp) dQ_met = dQmet_wp # The fonction bd.model must return at least the derivatives list(c(dQ_fat, dQ_wp, dQ_pp, dQ_met), # derivatives c("C_ven" = C_ven, "C_art" = C_art)) # extra outputs }) # end with parameters }) # end with y } # end bd.model # Define the computation output times times = seq(from=0, to=1440, by=10) # Call the ODE solver library(deSolve) results = ode(times = times, func = bd.model, y = y, parms = parameters) # results is basically a table results # Plot the results of the simulation plot(results) # End # End Simple Simulation. #================================================================= #================================================================= # Monte Carldo simulations # We assume that a simple simulation has already been run, so that # y, parameters, C_inh, and bd.model have all been defined and that # deSolve has been loaded. for (iteration in 1:1000) { # 1000 Monte Carlo simulations... # Sample randomly some parameters parameters["BDM"] = rnorm(1, 73, 7.3) parameters["Flow_pul"] = rnorm(1, 5, 0.5) parameters["PC_art"] = rnorm(1, 2, 0.2) parameters["Kmetwp"] = rnorm(1, 0.25, 0.025) # Reduce output times eventually. We only care about time 1440, # but time zero still needs to be specified times = c(0, 1440) # Integrate tmp = ode(times = times, func = bd.model, y = y, parms = parameters) if (iteration == 1) { # initialize results = tmp[2,-1] sampled.parms = c(parameters["BDM"], parameters["Flow_pul"], parameters["PC_art"], parameters["Kmetwp"]) } else { # accumulate results = rbind(results, tmp[2,-1]) sampled.parms = rbind(sampled.parms, c(parameters["BDM"], parameters["Flow_pul"], parameters["PC_art"], parameters["Kmetwp"])) } } # end Monte Cardo loop # Save the results, specially if they took a long time to compute save(sampled.parms, results, file="MTC.dat.xz", compress = "xz") # use load(file="MTC.dat.xz") to read them back in # Plot the results hist(sampled.parms[,1]) hist(results[,1]) plot(sampled.parms[,1], results[,1]) # End Monte Carlo Simulations. #=================================================================

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bois, F.Y., Tebby, C., Brochot, C. (2022). PBPK Modeling to Simulate the Fate of Compounds in Living Organisms. In: Benfenati, E. (eds) In Silico Methods for Predicting Drug Toxicity. Methods in Molecular Biology, vol 2425. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1960-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1960-5_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1959-9

  • Online ISBN: 978-1-0716-1960-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics