Skip to main content

Confocal Imaging of Single-Cell Signaling in Orthotopic Models of Ovarian Cancer

  • Protocol
  • First Online:
Ovarian Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2424))

Abstract

Ovarian cancer (OVCA) is frequently detected at late stages of disease, often with dissemination throughout the peritoneal cavity surface, abdomen, and ascites fluid. Tumor signaling via mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways can promote OVCA progression and depend on local microenvironmental cues. To better study OVCA in situ within native tissue contexts, here we describe confocal microscopy techniques to image mouse models of intraperitoneal disease at a single-cell resolution. As a proof of principle demonstration, examples are highlighted for simultaneously imaging tumor vascularization, infiltrating and often immunosuppressive immune cells (tumor-associated macrophages), and OVCA kinase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1

    Article  Google Scholar 

  2. Previs RA, Sood AK, Mills GB, Westin SN (2016) The rise of genomic profiling in ovarian cancer. Expert Rev Mol Diagn 16:1337

    Article  CAS  Google Scholar 

  3. Wang SJ, Li R, Ng TSC, Luthria G, Oudin MJ, Prytyskach M, Kohler RH, Weissleder R, Lauffenburger DA, Miller MA (2020) Efficient blockade of locally reciprocated tumor-macrophage signaling using a TAM-avid nanotherapy. Sci Adv 6:eaaz8521

    Article  CAS  Google Scholar 

  4. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, Zou W, Howcroft TK, Woodhouse EC, Weinberg RA, Krummel MF (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24:541

    Article  CAS  Google Scholar 

  5. Yang Y, Yang J, Zhao X, Wei X (2020) Tumor microenvironment in ovarian cancer: function and therapeutic strategy. Front Cell Dev Biol 8:758

    Article  Google Scholar 

  6. Colvin EK (2014) Tumor-associated macrophages contribute to tumor progression in ovarian cancer. Front Oncol 4:137

    Article  Google Scholar 

  7. Carroll MJ, Fogg KC, Patel HA, Krause HB, Mancha AS, Patankar MS, Weisman PS, Barroilhet L, Kreeger PK (2018) Alternatively-activated macrophages upregulate mesothelial expression of P-selectin to enhance adhesion of ovarian cancer cells. Cancer Res 78:3560

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cortez AJ, Tudrej P, Kujawa KA, Lisowska KM (2018) Advances in ovarian cancer therapy. Cancer Chemother Pharmacol 81:17

    Article  CAS  Google Scholar 

  9. Azaïs H, Estevez JP, Foucher P, Kerbage Y, Mordon S, Collinet P (2017) Dealing with microscopic peritoneal metastases of epithelial ovarian cancer. A surgical challenge. Surg Oncol 26:46

    Article  Google Scholar 

  10. Shaw TJ, Senterman MK, Dawson K, Crane CA, Vanderhyden BC (2004) Characterization of intraperitoneal, orthotopic, and metastatic xenograft models of human ovarian cancer. Mol Ther 10:1032

    Article  CAS  Google Scholar 

  11. Maniati E, Berlato C, Gopinathan G, Heath O, Kotantaki P, Lakhani A, McDermott J, Pegrum C, Delaine-Smith RM, Pearce OMT, Hirani P, Joy JD, Szabova L, Perets R, Sansom OJ, Drapkin R, Bailey P, Balkwill FR (2020) Mouse ovarian cancer models recapitulate the human tumor microenvironment and patient response to treatment. Cell Rep 30:525

    Article  CAS  Google Scholar 

  12. Miller MA, Weissleder R (2017) Imaging the pharmacology of nanomaterials by intravital microscopy: toward understanding their biological behavior. Adv Drug Deliv Rev 113:61

    Article  CAS  Google Scholar 

  13. Bochner F, Fellus-Alyagor L, Kalchenko V, Shinar S, Neeman M (2015) A novel Intravital imaging window for longitudinal microscopy of the mouse ovary. Sci Rep 5:12446

    Article  Google Scholar 

  14. Alieva M, Ritsma L, Giedt RJ, Weissleder R, van Rheenen J (2014) Imaging windows for long-term intravital imaging: general overview and technical insights. Intravital 3:e29917

    Article  Google Scholar 

  15. Coste A, Oktay MH, Condeelis JS, Entenberg D (2020) Intravital imaging techniques for biomedical and clinical research. Cytometry A 97:448

    Article  Google Scholar 

  16. Regot S, Hughey JJ, Bajar BT, Carrasco S, Covert MW (2014) High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157:1724

    Article  CAS  Google Scholar 

  17. Gerosa L, Chidley C, Fröhlich F, Sanchez G, Lim SK, Muhlich J, Chen JY, Vallabhaneni S, Baker GJ, Schapiro D, Atanasova MI, Chylek LA, Shi T, Yi L, Nicora CD, Claas A, Ng TSC, Kohler RH, Lauffenburger DA, Weissleder R, Miller MA, Qian WJ, Wiley HS, Sorger PK (2020) Receptor-driven ERK pulses reconfigure MAPK signaling and enable persistence of drug-adapted BRAF-mutant melanoma cells. Cell Syst 11:478

    Article  CAS  Google Scholar 

  18. Pokrass MJ, Ryan KA, Xin T, Pielstick B, Timp W, Greco V, Regot S (2020) Cell-cycle-dependent ERK signaling dynamics direct fate specification in the mammalian preimplantation embryo. Dev Cell 55:328

    Article  CAS  Google Scholar 

  19. Simon CS, Rahman S, Raina D, Schröter C, Hadjantonakis AK (2020) Live visualization of ERK activity in the mouse blastocyst reveals lineage-specific signaling dynamics. Dev Cell 55:341

    Article  CAS  Google Scholar 

  20. Goglia AG, Wilson MZ, Jena SG, Silbert J, Basta LP, Devenport D, Toettcher JE (2020) A live-cell screen for altered Erk dynamics reveals principles of proliferative control. Cell Syst 10:240

    Article  CAS  Google Scholar 

  21. Miller MA, Zheng YR, Gadde S, Pfirschke C, Zope H, Engblom C, Kohler RH, Iwamoto Y, Yang KS, Askevold B, Kolishetti N, Pittet M, Lippard SJ, Farokhzad OC, Weissleder R (2015) Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat Commun 6:8692

    Article  CAS  Google Scholar 

  22. Pépin D, Sosulski A, Zhang L, Wang D, Vathipadiekal V, Hendren K, Coletti CM, Yu A, Castro CM, Birrer MJ, Gao G, Donahoe PK (2015) AAV9 delivering a modified human Mullerian inhibiting substance as a gene therapy in patient-derived xenografts of ovarian cancer. Proc Natl Acad Sci U S A 112:E4418

    PubMed  PubMed Central  Google Scholar 

  23. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676

    Article  CAS  Google Scholar 

  24. Wang X, McManus M (2009) Lentivirus production. J Vis Exp 2:1499

    Google Scholar 

  25. Mendenhall A, Lesnik J, Mukherjee C, Antes T, Sengupta R (2012) Packaging HIV- or FIV-based lentivector expression constructs and transduction of VSV-G pseudotyped viral particles. J Vis Exp 8:e3171

    Google Scholar 

  26. O’Doherty U, Swiggard WJ, Malim MH (2000) Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol 74:10074

    Article  Google Scholar 

  27. Kudo T, Jeknić S, Macklin DN, Akhter S, Hughey JJ, Regot S, Covert MW (2018) Live-cell measurements of kinase activity in single cells using translocation reporters. Nat Protoc 13:155

    Article  CAS  Google Scholar 

  28. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100

    Article  Google Scholar 

  29. Jin X, Demere Z, Nair K, Ali A, Ferraro GB, Natoli T, Deik A, Petronio L, Tang AA, Zhu C, Wang L, Rosenberg D, Mangena V, Roth J, Chung K, Jain RK, Clish CB, Vander Heiden MG, Golub TR (2020) A metastasis map of human cancer cell lines. Nature 588:331

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants DP2CA259675 and R00CA207744. The authors thank the MGH Center for Systems Biology Mouse Imaging Program for experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miles A. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Matvey, D.O., Ng, T.S.C., Miller, M.A. (2022). Confocal Imaging of Single-Cell Signaling in Orthotopic Models of Ovarian Cancer. In: Kreeger, P.K. (eds) Ovarian Cancer. Methods in Molecular Biology, vol 2424. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1956-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1956-8_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1955-1

  • Online ISBN: 978-1-0716-1956-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics