Skip to main content

Advertisement

Log in

Intravital imaging to study cancer progression and metastasis

  • Review Article
  • Published:

From Nature Reviews Cancer

View current issue Sign up to alerts

Abstract

Navigation through the bulk tumour, entry into the blood vasculature, survival in the circulation, exit at distant sites and resumption of proliferation are all steps necessary for tumour cells to successfully metastasize. The ability of tumour cells to complete these steps is highly dependent on the timing and sequence of the interactions that these cells have with the tumour microenvironment (TME), including stromal cells, the extracellular matrix and soluble factors. The TME thus plays a major role in determining the overall metastatic phenotype of tumours. The complexity and cause-and-effect dynamics of the TME cannot currently be recapitulated in vitro or inferred from studies of fixed tissue, and are best studied in vivo, in real time and at single-cell resolution. Intravital imaging (IVI) offers these capabilities, and recent years have been a time of immense growth and innovation in the field. Here we review some of the recent advances in IVI of mammalian models of cancer and describe how IVI is being used to understand cancer progression and metastasis, and to develop novel treatments and therapies. We describe new techniques that allow access to a range of tissue and cancer types, novel fluorescent reporters and biosensors that allow fate mapping and the probing of functional and phenotypic states, and the clinical applications that have arisen from applying these techniques, reporters and biosensors to study cancer. We finish by presenting some of the challenges that remain in the field, how to address them and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Example images obtained by intravital imaging taken from a variety of tissues.
Fig. 2: Large-volume, high-resolution intravital imaging.
Fig. 3: The contribution of high-resolution intravital imaging to our understanding of the effects of various therapies on the tumour microenvironment and cancer phenotype.

Similar content being viewed by others

References

  1. Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011).

    Article  CAS  Google Scholar 

  2. Pantel, K. & Brakenhoff, R. H. Dissecting the metastatic cascade. Nat. Rev. Cancer 4, 448–456 (2004).

    Article  CAS  Google Scholar 

  3. Warren, S. & Gates, O. The fate of intravenously injected tumor cells. Am. J. Cancer 27, 485–492 (1936).

    Article  Google Scholar 

  4. Seruga, B., Ocana, A., Amir, E. & Tannock, I. F. Failures in phase III: causes and consequences. Clin. Cancer Res. 21, 4552–4560 (2015).

    Article  CAS  Google Scholar 

  5. Jardim, D. L., Groves, E. S., Breitfeld, P. P. & Kurzrock, R. Factors associated with failure of oncology drugs in late-stage clinical development: a systematic review. Cancer Treat. Rev. 52, 12–21 (2017).

    Article  Google Scholar 

  6. DeClerck, Y. A., Pienta, K. J., Woodhouse, E. C., Singer, D. S. & Mohla, S. The tumor microenvironment at a turning point knowledge gained over the last decade, and challenges and opportunities ahead: a white paper from the NCI TME network. Cancer Res. 77, 1051–1059 (2017). This article reports the consensus view of the Tumor Microenvironment Network, a 10-year-long US National Cancer Institute-funded programme aimed at investigating tumour–host interactions in different organ systems, and its finding that tumour–stroma interactions play an important role in tumour progression and metastasis.

    Article  CAS  Google Scholar 

  7. Eddy, R. J., Weidmann, M. D., Sharma, V. P. & Condeelis, J. S. Tumor cell invadopodia: invasive protrusions that orchestrate metastasis. Trends Cell Biol. 27, 595–607 (2017).

    Article  CAS  Google Scholar 

  8. Condeelis, J. & Weissleder, R. In vivo imaging in cancer. Cold Spring Harb. Perspect. Biol. 2, a003848 (2010).

    Article  CAS  Google Scholar 

  9. Beerling, E., Ritsma, L., Vrisekoop, N., Derksen, P. W. & van Rheenen, J. Intravital microscopy: new insights into metastasis of tumors. J. Cell Sci. 124, 299–310 (2011).

    Article  CAS  Google Scholar 

  10. Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003).

    Article  CAS  Google Scholar 

  11. So, P. T., Dong, C. Y., Masters, B. R. & Berland, K. M. Two-photon excitation fluorescence microscopy. Annu. Rev. Biomed. Eng. 2, 399–429 (2000).

    Article  CAS  Google Scholar 

  12. Hoffman, R. M. The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat. Rev. Cancer 5, 796–806 (2005).

    Article  CAS  Google Scholar 

  13. Pittet, M. J. & Weissleder, R. Intravital imaging. Cell 147, 983–991 (2011).

    Article  CAS  Google Scholar 

  14. Weigert, R., Porat-Shliom, N. & Amornphimoltham, P. Imaging cell biology in live animals: ready for prime time. J. Cell Biol. 201, 969–979 (2013).

    Article  CAS  Google Scholar 

  15. Peti-Peterdi, J. In vivo microscopy. Nephrol. Ther. 12 (Suppl. 1), 21–24 (2016).

    Article  Google Scholar 

  16. Perrin, L., Bayarmagnai, B. & Gligorijevic, B. Frontiers in intravital multiphoton microscopy of cancer. Cancer Rep. 3, e1192 (2020).

    Google Scholar 

  17. Vaghela, R., Arkudas, A., Horch, R. E. & Hessenauer, M. Actually seeing what is going on - intravital microscopy in tissue engineering. Front. Bioeng. Biotechnol. 9, 627462 (2021).

    Article  Google Scholar 

  18. Condeelis, J. & Segall, J. E. Intravital imaging of cell movement in tumours. Nat. Rev. Cancer 3, 921–930 (2003).

    Article  CAS  Google Scholar 

  19. Chishima, T. et al. Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Res. 57, 2042–2047 (1997).

    CAS  Google Scholar 

  20. Naumov, G. N. et al. Cellular expression of green fluorescent protein, coupled with high- resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J. Cell Sci. 112, 1835–1842 (1999).

    Article  CAS  Google Scholar 

  21. Farina, K. L. et al. Cell motility of tumor cells visualized in living intact primary tumors using green fluorescent protein. Cancer Res. 58, 2528–2532 (1998).

    CAS  Google Scholar 

  22. Hoffman, R. M. & Yang, M. Subcellular imaging in the live mouse. Nat. Protoc. 1, 775–782 (2006).

    Article  CAS  Google Scholar 

  23. Yang, M. et al. Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells. Proc. Natl Acad. Sci. USA 100, 14259–14262 (2003).

    Article  CAS  Google Scholar 

  24. Hoffman, R. M. & Yang, M. Color-coded fluorescence imaging of tumor-host interactions. Nat. Protoc. 1, 928–935 (2006).

    Article  CAS  Google Scholar 

  25. Alieva, M., Ritsma, L., Giedt, R. J., Weissleder, R. & van Rheenen, J. Imaging windows for long-term intravital imaging: general overview and technical insights. Intravital 3, e29917 (2014).

    Article  Google Scholar 

  26. Kitamura, T., Pollard, J. W. & Vendrell, M. Optical windows for imaging the metastatic tumour microenvironment in vivo. Trends Biotechnol. 35, 5–8 (2017).

    Article  CAS  Google Scholar 

  27. Entenberg, D. et al. Imaging tumor cell movement in vivo. Curr. Protoc. Cell Biol. https://doi.org/10.1002/0471143030.cb1907s58 (2013).

    Article  Google Scholar 

  28. Ritsma, L., Ponsioen, B. & van Rheenen, J. Intravital imaging of cell signaling in mice. Intravital 1, 2–10 (2012).

    Article  Google Scholar 

  29. Timpson, P., McGhee, E. J. & Anderson, K. I. Imaging molecular dynamics in vivo-from cell biology to animal models. J. Cell Sci. 124, 2877–2890 (2011).

    Article  CAS  Google Scholar 

  30. Zomer, A. et al. Intravital imaging of cancer stem cell plasticity in mammary tumors. Stem Cell 31, 602–606 (2013).

    Article  CAS  Google Scholar 

  31. Miller, M. A. & Weissleder, R. Imaging of anticancer drug action in single cells. Nat. Rev. Cancer 17, 399–414 (2017).

    Article  CAS  Google Scholar 

  32. Coste, A., Oktay, M. H., Condeelis, J. S. & Entenberg, D. Intravital imaging techniques for biomedical and clinical research. Cytom. A 97, 448–457 (2020).

    Article  Google Scholar 

  33. Cahalan, M. D., Parker, I., Wei, S. H. & Miller, M. J. Real-time imaging of lymphocytes in vivo. Curr. Opin. Immunol. 15, 372–377 (2003).

    Article  CAS  Google Scholar 

  34. Zinselmeyer, B. H., Lynch, J. N., Zhang, X., Aoshi, T. & Miller, M. J. Video-rate two-photon imaging of mouse footpad - a promising model for studying leukocyte recruitment dynamics during inflammation. Inflamm. Res. 57, 93–96 (2008).

    Article  CAS  Google Scholar 

  35. You, S. et al. Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy. Nat. Commun. 9, 2125 (2018).

    Article  Google Scholar 

  36. Wang, T. et al. Three-photon imaging of mouse brain structure and function through the intact skull. Nat. Methods 15, 789–792 (2018).

    Article  Google Scholar 

  37. Mahou, P. et al. Multicolor two-photon tissue imaging by wavelength mixing. Nat. Methods 9, 815–818 (2012).

    Article  CAS  Google Scholar 

  38. Provenzano, P. P., Eliceiri, K. W. & Keely, P. J. Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin. Exp. Metastasis 26, 357–370 (2009).

    Article  CAS  Google Scholar 

  39. Wang, Y. et al. Direct visualization of the phenotype of hypoxic tumor cells at single cell resolution in vivo using a new hypoxia probe. Intravital 5, e1187803 (2016).

    Article  Google Scholar 

  40. Aguirre-Ghiso, J. A., Ossowski, L. & Rosenbaum, S. K. Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res. 64, 7336–7345 (2004).

    Article  CAS  Google Scholar 

  41. Sharma, V. P. et al. Live tumor imaging shows macrophage induction and TMEM-mediated enrichment of cancer stem cells during metastatic dissemination. Nat. Commun. 12, 7300 (2021). This work uses high-resolution intravital microscopy of a fluorescent biosensor for CSCs to discover that tumour-associated macrophages induce a stem-like phenotype in migrating breast cancer cells as the tumour cells enter the vasculature.

    Article  CAS  Google Scholar 

  42. Dorand, R. D., Barkauskas, D. S., Evans, T. A., Petrosiute, A. & Huang, A. Y. Comparison of intravital thinned skull and cranial window approaches to study CNS immunobiology in the mouse cortex. Intravital https://doi.org/10.4161/intv.29728 (2014).

    Article  Google Scholar 

  43. Cabrera, M. & Frevert, U. Novel in vivo imaging techniques for the liver microvasculature. Intravital 1, 107–114 (2012).

    Article  Google Scholar 

  44. Ritsma, L. et al. Surgical implantation of an abdominal imaging window for intravital microscopy. Nat. Protoc. 8, 583–594 (2013).

    Article  CAS  Google Scholar 

  45. Siemionow, M. & Nanhekhan, L. V. Introduction of cremaster muscle chamber technique for long-term intravital microscopy. Ann. Plast. Surg. 43, 161–166 (1999).

    Article  CAS  Google Scholar 

  46. Kawakami, N. Intravital imaging of T cells within the spinal cord. Methods Mol. Biol. 1763, 119–127 (2018).

    Article  Google Scholar 

  47. Fenrich, K. K. et al. Long-term in vivo imaging of normal and pathological mouse spinal cord with subcellular resolution using implanted glass windows. J. Physiol. 590, 3665–3675 (2012).

    Article  CAS  Google Scholar 

  48. Entenberg, D. et al. Time-lapsed, large-volume, high-resolution intravital imaging for tissue-wide analysis of single cell dynamics. Methods 128, 65–77 (2017). This article provides techniques for achieving LVHR-IVI in a variety of tissues, and describes how this LVHR-IVI can yield multiscale images that provide information similar to that obtained by pathologists when analysing fixed tissues.

    Article  CAS  Google Scholar 

  49. Williams, J. K. et al. Validation of a device for the active manipulation of the tumor microenvironment during intravital imaging. Intravital 5, e1182271 (2016).

    Article  Google Scholar 

  50. Bochner, F., Fellus-Alyagor, L., Kalchenko, V., Shinar, S. & Neeman, M. A novel intravital imaging window for longitudinal microscopy of the mouse ovary. Sci. Rep. 5, 12446 (2015).

    Article  Google Scholar 

  51. Dunn, K. W., Sutton, T. A. & Sandoval, R. M. Live-animal imaging of renal function by multiphoton microscopy. Curr. Protoc. Cytom. https://doi.org/10.1002/0471142956.cy1209s41 (2007).

    Article  Google Scholar 

  52. Das, S. et al. Tumor cell entry into the lymph node is controlled by CCL1 chemokine expressed by lymph node lymphatic sinuses. J. Exp. Med. 210, 1509–1528 (2013).

    Article  CAS  Google Scholar 

  53. Zolla, V. et al. Aging-related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance. Aging Cell 14, 582–594 (2015).

    Article  CAS  Google Scholar 

  54. Sellers, S. L. & Payne, G. W. Intravital microscopy of the inguinal lymph node. J. Vis. Exp. https://doi.org/10.3791/2551 (2011).

    Article  Google Scholar 

  55. Meijer, E. F. J. et al. Murine chronic lymph node window for longitudinal intravital lymph node imaging. Nat. Protoc. 12, 1513–1520 (2017).

    Article  CAS  Google Scholar 

  56. Masedunskas, A., Porat-Shliom, N., Tora, M., Milberg, O. & Weigert, R. Intravital microscopy for imaging subcellular structures in live mice expressing fluorescent proteins. J. Vis. Exp. https://doi.org/10.3791/50558 (2013).

    Article  Google Scholar 

  57. Entenberg, D. et al. In vivo subcellular resolution optical imaging in the lung reveals early metastatic proliferation and motility. Intravital 4, 1–11 (2015).

    Article  Google Scholar 

  58. Entenberg, D. et al. A permanent window for the murine lung enables high-resolution imaging of cancer metastasis. Nat. Methods 15, 73–80 (2018).

    Article  CAS  Google Scholar 

  59. Huang, Q. et al. Intravital imaging of mouse embryos. Science 368, 181–186 (2020).

    Article  CAS  Google Scholar 

  60. Kishikova, L., Norris, J. M. & Smith, M. D. Engineering the future of surgery: the place of the surgical engineering faculty. Surgery 153, 135 (2013).

    Article  Google Scholar 

  61. Riskin, D. J., Longaker, M. T., Gertner, M. & Krummel, T. M. Innovation in surgery: a historical perspective. Ann. Surg. 244, 686–693 (2006).

    Article  Google Scholar 

  62. Ritsma, L. et al. Intravital microscopy through an abdominal imaging window reveals a pre-micrometastasis stage during liver metastasis. Sci. Transl Med. 4, 158ra145 (2012).

    Article  Google Scholar 

  63. Reismann, D. et al. Longitudinal intravital imaging of the femoral bone marrow reveals plasticity within marrow vasculature. Nat. Commun. 8, 2153 (2017).

    Article  Google Scholar 

  64. Harney, A. S. et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov. 5, 932–943 (2015). This work uses IVI to study primary breast tumours and finds that tumour cell intravasation occurs at sites of transient vascular opening, restricted to intravasation sites known as TMEM doorways, and that intravasation is dependent on TIE2hi TMEM macrophages.

    Article  CAS  Google Scholar 

  65. Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 16, 116–122 (2010).

    Article  CAS  Google Scholar 

  66. Laughney, A. M. et al. Single-cell pharmacokinetic imaging reveals a therapeutic strategy to overcome drug resistance to the microtubule inhibitor eribulin. Sci. Transl Med. 6, 261ra152 (2014).

    Article  Google Scholar 

  67. Arlauckas, S. P. et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci. Transl Med. https://doi.org/10.1126/scitranslmed.aal3604 (2017).

    Article  Google Scholar 

  68. Nakasone, E. S. et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21, 488–503 (2012). This article provides an excellent example of how intravital microscopy can be used to investigate the dynamics of cancer cell death in response to therapy in the in vivo TME, revealing drug distribution, cell death, and tumour–stroma interactions and gaining insights into drug responses in vivo.

    Article  CAS  Google Scholar 

  69. Karagiannis, G. S. et al. Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci. Transl Med. https://doi.org/10.1126/scitranslmed.aan0026 (2017). Using fixed tissue and IVI, this work looks at the effect of chemotherapy on TMEM doorway-mediated breast cancer cell dissemination and finds that chemotherapy increases dissemination by increasing the density and activity of TMEM doorways and increases MENA expression.

    Article  Google Scholar 

  70. Price, D. L. et al. High-resolution large-scale mosaic imaging using multiphoton microscopy to characterize transgenic mouse models of human neurological disorders. Neuroinformatics 4, 65–80 (2006).

    Article  Google Scholar 

  71. Rios, A. C. et al. Intraclonal plasticity in mammary tumors revealed through large-scale single-cell resolution 3D imaging. Cancer Cell 35, 618–632 (2019).

    Article  CAS  Google Scholar 

  72. Carmeliet, P. & Jain, R. K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov. 10, 417–427 (2011).

    Article  CAS  Google Scholar 

  73. Pinder, S. E. Ductal carcinoma in situ (DCIS): pathological features, differential diagnosis, prognostic factors and specimen evaluation. Mod. Pathol. 23 (Suppl. 2), 8–13 (2010).

    Article  Google Scholar 

  74. Dunphy, M. P., Entenberg, D., Toledo-Crow, R. & Larson, S. M. In vivo microcartography and subcellular imaging of tumor angiogenesis: a novel platform for translational angiogenesis research. Microvasc. Res. 78, 51–56 (2009).

    Article  CAS  Google Scholar 

  75. Amornphimoltham, P., Thompson, J., Melis, N. & Weigert, R. Non-invasive intravital imaging of head and neck squamous cell carcinomas in live mice. Methods 128, 3–11 (2017).

    Article  CAS  Google Scholar 

  76. Harper, K. L. et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature 540, 589–612 (2016). This work demonstrates (in part using LVHR-IVI) that tumour cell dissemination occurs even during the early stages of tumour evolution (before any apparent primary tumour masses are detected), and identifies the mechanism regulating this spread.

    Article  Google Scholar 

  77. Borriello, L. et al. Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells. Nat. Commun. 13, 626 (2022). This work uses IVI to look at the fate of individual disseminated breast cancer cells as they arrive at the lung, and finds that, within the primary site, tumour-associated macrophages induce dissemination and dormancy phenotypes within a subset of tumour cells as the tumour cells enter the vasculature.

    Article  CAS  Google Scholar 

  78. Wood, S. Jr Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber. AMA Arch. Pathol. 66, 550–568 (1958).

    Google Scholar 

  79. Sandison, J. C. A new method for the microscopic study of living growing tissues by the introduction of a transparent chamber in the rabbit’s ear. Anat. Rec. 28, 281–287 (1924).

    Article  Google Scholar 

  80. Morris, V. L. et al. Early interactions of cancer cells with the microvasculature in mouse liver and muscle during hematogenous metastasis: videomicroscopic analysis. Clin. Exp. Metastasis 11, 377–390 (1993).

    Article  CAS  Google Scholar 

  81. Koike, Y., Hatori, M. & Kokubun, S. Skeletal muscle metastasis secondary to cancer-a report of seven cases. Ups. J. Med. Sci. 110, 75–83 (2005).

    Article  Google Scholar 

  82. Crist, S. B. & Ghajar, C. M. When a house is not a home: a survey of antimetastatic niches and potential mechanisms of disseminated tumor cell suppression. Annu. Rev. Pathol. 16, 409–432 (2021).

    Article  CAS  Google Scholar 

  83. Crist, S. B. et al. Unchecked oxidative stress in skeletal muscle prevents outgrowth of disseminated tumour cells. Nat. Cell Biol. 24, 538–553 (2022).

    Article  CAS  Google Scholar 

  84. Hayashi, K. et al. Real-time imaging of tumor-cell shedding and trafficking in lymphatic channels. Cancer Res. 67, 8223–8228 (2007).

    Article  CAS  Google Scholar 

  85. Brown, M. et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science 359, 1408–1411 (2018).

    Article  CAS  Google Scholar 

  86. Pereira, E. R. et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science 359, 1403–1407 (2018).

    Article  CAS  Google Scholar 

  87. Coste, A. et al. Hematogenous dissemination of breast cancer cells from lymph nodes is mediated by tumor microenvironment of metastasis doorways. Front. Oncol. 10, 571100 (2020).

    Article  Google Scholar 

  88. Young, J. Malpighi’s “De Pulmonibus”. Proc. R. Soc. Med. 23, 1–11 (1929).

    CAS  Google Scholar 

  89. Hall, H. L. A study of the pulmonary circulation by the trans-illumination method. Am. J. Physiol. Leg. Content 72, 446–457 (1925).

    Article  Google Scholar 

  90. Terry, R. J. A thoracic window for observation of the lung in a living animal. Science 90, 43–44 (1939).

    Article  CAS  Google Scholar 

  91. Funakoshi, N. et al. A new model of lung metastasis for intravital studies. Microvasc. Res. 59, 361–367 (2000).

    Article  CAS  Google Scholar 

  92. Hatakawa, H. et al. Blood flow does not correlate with the size of metastasis in our new intravital observation model of Lewis lung cancer. Microvasc. Res. 64, 32–37 (2002).

    Article  Google Scholar 

  93. Headley, M. B. et al. Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature 531, 513–517 (2016).

    Article  CAS  Google Scholar 

  94. Borriello, L., Traub, B., Coste, A., Oktay, M. H. & Entenberg, D. A permanent window for investigating cancer metastasis to the lung. J. Vis. Exp. https://doi.org/10.3791/62761 (2021).

    Article  Google Scholar 

  95. Dai, J. et al. Astrocytic laminin-211 drives disseminated breast tumor cell dormancy in brain. Nat. Cancer 3, 25–42 (2022).

    Article  CAS  Google Scholar 

  96. Stelzer, K. J. Epidemiology and prognosis of brain metastases. Surg. Neurol. Int. 4, S192–S202 (2013).

    Article  Google Scholar 

  97. Bagge, U., Skolnik, G. & Ericson, L. E. The arrest of circulating tumor cells in the liver microcirculation. A vital fluorescence microscopic, electron microscopic and isotope study in the rat. J. Cancer Res. Clin. Oncol. 105, 134–140 (1983).

    Article  CAS  Google Scholar 

  98. Scherbarth, S. & Orr, F. W. Intravital videomicroscopic evidence for regulation of metastasis by the hepatic microvasculature: effects of interleukin-1alpha on metastasis and the location of B16F1 melanoma cell arrest. Cancer Res. 57, 4105–4110 (1997).

    CAS  Google Scholar 

  99. Schluter, K. et al. Organ-specific metastatic tumor cell adhesion and extravasation of colon carcinoma cells with different metastatic potential. Am. J. Pathol. 169, 1064–1073 (2006).

    Article  Google Scholar 

  100. Sipkins, D. A. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969–973 (2005).

    Article  CAS  Google Scholar 

  101. DiPiro, J. T., Spruill, W., Wade, W., Blouin, R. A. & Pruemer, J. M. in Concepts in Clinical Pharmacokinetics 5th edn (American Society of Health-System Pharmacists, 2010).

  102. Cho, S. & Yoon, Y. R. Understanding the pharmacokinetics of prodrug and metabolite. Transl Clin. Pharmacol. 26, 1–5 (2018).

    Article  Google Scholar 

  103. Tuntland, T. et al. Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at Novartis Institute of Biomedical Research. Front. Pharmacol. 5, 174 (2014).

    Article  Google Scholar 

  104. Matthews, P. M., Rabiner, E. A., Passchier, J. & Gunn, R. N. Positron emission tomography molecular imaging for drug development. Br. J. Clin. Pharmacol. 73, 175–186 (2012).

    Article  CAS  Google Scholar 

  105. Bousso, P. Diving into the mechanism of action of tumor immunotherapies with intravital imaging. Immunol. Rev. 306, 218–223 (2022).

    Article  CAS  Google Scholar 

  106. Momiyama, M. et al. Subcellular real-time imaging of the efficacy of temozolomide on cancer cells in the brain of live mice. Anticancer Res. 33, 103–106 (2013).

    CAS  Google Scholar 

  107. Rodell, C. B. et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2, 578–588 (2018).

    Article  CAS  Google Scholar 

  108. Miller, M. A. et al. Modular nanoparticulate prodrug design enables efficient treatment of solid tumors using bioorthogonal activation. ACS Nano 12, 12814–12826 (2018).

    Article  CAS  Google Scholar 

  109. Canel, M. et al. Quantitative in vivo imaging of the effects of inhibiting integrin signaling via Src and FAK on cancer cell movement: effects on E-cadherin dynamics. Cancer Res. 70, 9413–9422 (2010).

    Article  CAS  Google Scholar 

  110. Miller, M. A. et al. Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Sci. Transl Med. 9, eaal0225 (2017). This article demonstrates how IVI can lead to new therapeutic approaches, by showing how radiotherapy causes tumour-associated macrophages to accumulate adjacent to microvasculature, and that they then ‘prime’ the TME for improved drug responses by eliciting dynamic bursts of extravasation, and subsequently enhance drug delivery and uptake in neighbouring tumour cells.

    Article  Google Scholar 

  111. Vennin, C., Herrmann, D., Lucas, M. C. & Timpson, P. Intravital imaging reveals new ancillary mechanisms co-opted by cancer cells to drive tumor progression. F1000Res 5, 892 (2016).

    Article  Google Scholar 

  112. Beltman, J. B., Maree, A. F. & de Boer, R. J. Analysing immune cell migration. Nat. Rev. Immunol. 9, 789–798 (2009).

    Article  CAS  Google Scholar 

  113. Meijering, E., Dzyubachyk, O. & Smal, I. Methods for cell and particle tracking. Methods Enzymol. 504, 183–200 (2012).

    Article  Google Scholar 

  114. Entenberg, D. et al. Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging. Nat. Protoc. 6, 1500–1520 (2011).

    Article  CAS  Google Scholar 

  115. Dawson, C. A., Mueller, S. N., Lindeman, G. J., Rios, A. C. & Visvader, J. E. Intravital microscopy of dynamic single-cell behavior in mouse mammary tissue. Nat. Protoc. 16, 1907–1935 (2021).

    Article  CAS  Google Scholar 

  116. Bares, A. J. et al. Hyperspectral multiphoton microscopy for in vivo visualization of multiple, spectrally overlapped fluorescent labels. Optica 7, 1587–1601 (2020).

    Article  Google Scholar 

  117. Rakhymzhan, A. et al. Method for multiplexed dynamic intravital multiphoton imaging. Methods Mol. Biol. 2350, 145–156 (2021).

    Article  Google Scholar 

  118. Miska, J. et al. Real-time immune cell interactions in target tissue during autoimmune-induced damage and graft tolerance. J. Exp. Med. 211, 441–456 (2014).

    Article  CAS  Google Scholar 

  119. Chawda, C., McMorrow, R., Gaspar, N., Zambito, G. & Mezzanotte, L. Monitoring immune cell function through optical imaging: a review highlighting transgenic mouse models. Mol. Imaging Biol. 24, 250–263 (2022).

    Article  CAS  Google Scholar 

  120. Fumagalli, A. et al. Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer. Cell Stem Cell 26, 569–578 (2020). This article demonstrates how new fluorescent biosensors can be combined with IVI to reveal the behaviour and dynamics of CSCs during metastatic dissemination, finding that, in colorectal cancer, stemness is temporarily downregulated during the process of dissemination and then reactivated after arrival at the secondary site of the liver.

    Article  CAS  Google Scholar 

  121. Tang, B. et al. A flexible reporter system for direct observation and isolation of cancer stem cells. Stem Cell Rep. 4, 155–169 (2015).

    Article  Google Scholar 

  122. Helmlinger, G., Yuan, F., Dellian, M. & Jain, R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat. Med. 3, 177–182 (1997).

    Article  CAS  Google Scholar 

  123. Gligorijevic, B., Bergman, A. & Condeelis, J. Multiparametric classification links tumor microenvironments with tumor cell phenotype. PLoS Biol. 12, e1001995 (2014).

    Article  Google Scholar 

  124. Barth, N. D. et al. A fluorogenic cyclic peptide for imaging and quantification of drug-induced apoptosis. Nat. Commun. 11, 4027 (2020). This article provides an excellent example of the new probes being developed for IVI: a highly stable fluorogenic peptide that selectively stains apoptotic cells in vitro and in vivo and is validated in vivo for quantification and imaging of drug-induced apoptosis.

    Article  CAS  Google Scholar 

  125. Barth, N. D. et al. A bivalent activatable fluorescent probe for screening and intravital imaging of chemotherapy-induced cancer cell death. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202113020 (2021).

    Article  Google Scholar 

  126. Campagnola, P. Second harmonic generation imaging microscopy: applications to diseases diagnostics. Anal. Chem. 83, 3224–3231 (2011).

    Article  CAS  Google Scholar 

  127. Datta, R., Heaster, T. M., Sharick, J. T., Gillette, A. A. & Skala, M. C. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. J. Biomed. Opt. 25, 1–43 (2020).

    Article  Google Scholar 

  128. Hato, T. et al. Two-photon intravital fluorescence lifetime imaging of the kidney reveals cell-type specific metabolic signatures. J. Am. Soc. Nephrol. 28, 2420–2430 (2017).

    Article  CAS  Google Scholar 

  129. Szulczewski, J. M. et al. In vivo visualization of stromal macrophages via label-free FLIM-based metabolite imaging. Sci. Rep. 6, 25086 (2016).

    Article  CAS  Google Scholar 

  130. Leben, R. et al. Phasor-based endogenous NAD(P)H fluorescence lifetime imaging unravels specific enzymatic activity of neutrophil granulocytes preceding NETosis. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19041018 (2018).

    Article  Google Scholar 

  131. Conway, J. R. W. et al. Intravital imaging to monitor therapeutic response in moving hypoxic regions resistant to PI3K pathway targeting in pancreatic cancer. Cell Rep. 23, 3312–3326 (2018).

    Article  CAS  Google Scholar 

  132. Sun, Y. et al. Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery. J. Biomed. Opt. 15, 056022 (2010).

    Article  Google Scholar 

  133. Sun, Y. et al. Endoscopic fluorescence lifetime imaging for in vivo intraoperative diagnosis of oral carcinoma. Microsc. Microanal. 19, 791–798 (2013).

    Article  CAS  Google Scholar 

  134. Chang, Y. S., Jalgaonkar, S. P., Middleton, J. D. & Hai, T. Stress-inducible gene Atf3 in the noncancer host cells contributes to chemotherapy-exacerbated breast cancer metastasis. Proc. Natl Acad. Sci. USA 114, E7159–E7168 (2017).

    Article  CAS  Google Scholar 

  135. Borriello, L., Condeelis, J., Entenberg, D. & Oktay, M. H. Breast cancer cell re-dissemination from lung metastases — a mechanism for enhancing metastatic burden. J. Clin. Med. https://doi.org/10.3390/jcm10112340 (2021).

    Article  Google Scholar 

  136. Zhang, W. et al. The bone microenvironment invigorates metastatic seeds for further dissemination. Cell 184, 2471–2486 (2021). This work uses several approaches to demonstrate that metastatic breast and prostate tumour cells can remigrate from the bone to tertiary locations and that this effect is driven by epigenetic reprogramming that confers stem cell-like properties on the cancer cells.

    Article  CAS  Google Scholar 

  137. Cherdyntseva, N. V., Litviakov, N. V., Denisov, E. V., Gervas, P. A. & Cherdyntsev, E. S. Circulating tumor cells in breast cancer: functional heterogeneity, pathogenetic and clinical aspects. Exp. Oncol. 39, 2–11 (2017).

    Article  CAS  Google Scholar 

  138. Guller, U. et al. Disseminated single tumor cells as detected by real-time quantitative polymerase chain reaction represent a prognostic factor in patients undergoing surgery for colorectal cancer. Ann. Surg. 236, 768–775 (2002).

    Article  Google Scholar 

  139. Yang, C. et al. Prognostic value of pre- and post-operative circulating tumor cells detection in colorectal cancer patients treated with curative resection: a prospective cohort study based on ISET device. Cancer Manag. Res. 10, 4135–4144 (2018).

    Article  CAS  Google Scholar 

  140. Xie, Z. B., Yao, L., Jin, C. & Fu, D. L. Circulating tumor cells in pancreatic cancer patients: efficacy in diagnosis and value in prognosis. Discov. Med. 22, 121–128 (2016).

    Google Scholar 

  141. Friedl, P., Locker, J., Sahai, E. & Segall, J. E. Classifying collective cancer cell invasion. Nat. Cell Biol. 14, 777–783 (2012).

    Article  Google Scholar 

  142. Enterline, H. T. & Coman, D. R. The ameboid motility of human and animal neoplastic cells. Cancer 3, 1033–1038 (1950).

    Article  CAS  Google Scholar 

  143. Leighton, J., Kalla, R. L., Turner, J. M. Jr & Fennell, R. H. Jr Pathogenesis of tumor invasion. II. Aggregate replication. Cancer Res. 20, 575–586 (1960).

    CAS  Google Scholar 

  144. Giampieri, S. et al. Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat. Cell Biol. 11, 1287–1296 (2009).

    Article  CAS  Google Scholar 

  145. Ilina, O. et al. Intravital microscopy of collective invasion plasticity in breast cancer. Dis. Model. Mech. https://doi.org/10.1242/dmm.034330 (2018).

    Article  Google Scholar 

  146. Alexander, S., Koehl, G. E., Hirschberg, M., Geissler, E. K. & Friedl, P. Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem. Cell Biol. 130, 1147–1154 (2008).

    Article  CAS  Google Scholar 

  147. Lin, E. Y. et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am. J. Pathol. 163, 2113–2126 (2003). This work performs a detailed histological analysis of mammary tumour progression in the polyomavirus middle T antigen (PyMT) mouse model of breast cancer and compares it with that observed in humans, noting the morphological similarities as well as the consistency in biomarker expression between the two, thereby demonstrating that the PyMT mouse model is an excellent one to understand the biology of tumour progression in humans.

    Article  Google Scholar 

  148. Beerling, E., Oosterom, I., Voest, E., Lolkema, M. & van Rheenen, J. Intravital characterization of tumor cell migration in pancreatic cancer. Intravital 5, e1261773 (2016). This article characterizes migratory cells in primary pancreatic tumours using intravital microscopy and finds that pancreatic tumour cells migrate with a mesenchymal morphology as single individual cells or as a stream of non-cohesive single motile cells.

    Article  Google Scholar 

  149. Deryugina, E. I. & Kiosses, W. B. Intratumoral cancer cell intravasation can occur independent of invasion into the adjacent stroma. Cell Rep. 19, 601–616 (2017). This work analyses the spatial location of intravasation using explanted tissues and finds that intravasation occurs almost exclusively within the tumour core, involves intratumoural vasculature and does not involve vasculotropic cancer cells invading tumour-adjacent stroma and migrating along tumour-converging blood vessels.

    Article  CAS  Google Scholar 

  150. Rohan, T. E. et al. Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/dju136 (2014).

    Article  Google Scholar 

  151. Robinson, B. D. et al. Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin. Cancer Res. 15, 2433–2441 (2009).

    Article  CAS  Google Scholar 

  152. Ginter, P. S. et al. Tumor microenvironment of metastasis (TMEM) doorways are restricted to the blood vessel endothelium in both primary breast cancers and their lymph node metastases. Cancers 11, 1507 (2019).

    Article  CAS  Google Scholar 

  153. Nguyen-Ngoc, K. V. et al. ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium. Proc. Natl Acad. Sci. USA 109, E2595–E2604 (2012).

    Article  CAS  Google Scholar 

  154. Khalil, A. A. et al. Collective invasion in ductal and lobular breast cancer associates with distant metastasis. Clin. Exp. Metastasis 34, 421–429 (2017).

    Article  Google Scholar 

  155. Lugli, A. et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod. Pathol. 30, 1299–1311 (2017).

    Article  Google Scholar 

  156. Rogers, A. C. et al. Systematic review and meta-analysis of the impact of tumour budding in colorectal cancer. Br. J. Cancer 115, 831–840 (2016).

    Article  CAS  Google Scholar 

  157. van Wyk, H. C., Roxburgh, C. S., Horgan, P. G., Foulis, A. F. & McMillan, D. C. The detection and role of lymphatic and blood vessel invasion in predicting survival in patients with node negative operable primary colorectal cancer. Crit. Rev. Oncol. Hematol. 90, 77–90 (2014).

    Article  Google Scholar 

  158. Mohammed, R. A. et al. Objective assessment of lymphatic and blood vascular invasion in lymph node-negative breast carcinoma: findings from a large case series with long-term follow-up. J. Pathol. 223, 358–365 (2011).

    Article  Google Scholar 

  159. Liotta, L. A., Saidel, M. G. & Kleinerman, J. The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res. 36, 889–894 (1976).

    CAS  Google Scholar 

  160. Duda, D. G. et al. Malignant cells facilitate lung metastasis by bringing their own soil. Proc. Natl Acad. Sci. USA 107, 21677–21682 (2010).

    Article  CAS  Google Scholar 

  161. Kats-Ugurlu, G. et al. Circulating tumour tissue fragments in patients with pulmonary metastasis of clear cell renal cell carcinoma. J. Pathol. 219, 287–293 (2009).

    Article  CAS  Google Scholar 

  162. Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014).

    Article  CAS  Google Scholar 

  163. Liu, X. et al. Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models. Cancer Discov. 9, 96–113 (2019). This work uses IVI to look at the origin of breast cancer tumour cell clusters in the blood circulation and the lung, and finds that tumour cell clusters are formed by intravasation of single tumour cells, which then cluster in the blood circulation owing to a high tumour cell expression of the cell-surface adhesion molecule CD44.

    Article  Google Scholar 

  164. Thapa, R. & Wilson, G. D. The importance of CD44 as a stem cell biomarker and therapeutic target in cancer. Stem Cell Int. 2016, 2087204 (2016).

    Google Scholar 

  165. Gkountela, S. et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell 176, 98–112 (2019).

    Article  CAS  Google Scholar 

  166. Roussos, E. T. et al. Mena invasive (MenaINV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer. J. Cell Sci. 124, 2120–2131 (2011).

    Article  CAS  Google Scholar 

  167. Linde, N. et al. Macrophages orchestrate breast cancer early dissemination and metastasis. Nat. Commun. 9, 21 (2018).

    Article  Google Scholar 

  168. Wyckoff, J. B. et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 67, 2649–2656 (2007).

    Article  CAS  Google Scholar 

  169. Arwert, E. N. et al. A unidirectional transition from migratory to perivascular macrophage is required for tumor cell intravasation. Cell Rep. 23, 1239–1248 (2018).

    Article  CAS  Google Scholar 

  170. Stella, G. M., Kolling, S., Benvenuti, S. & Bortolotto, C. Lung-seeking metastases. Cancers 11, 1010 (2019).

    Article  CAS  Google Scholar 

  171. Qian, B. et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS ONE 4, e6562 (2009).

    Article  Google Scholar 

  172. Ferjancic, S. et al. VCAM-1 and VAP-1 recruit myeloid cells that promote pulmonary metastasis in mice. Blood 121, 3289–3297 (2013).

    Article  CAS  Google Scholar 

  173. Wyckoff, J. et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 64, 7022–7029 (2004).

    Article  CAS  Google Scholar 

  174. Karagiannis, G. S., Goswami, S., Jones, J. G., Oktay, M. H. & Condeelis, J. S. Signatures of breast cancer metastasis at a glance. J. Cell Sci. 129, 1751–1758 (2016).

    CAS  Google Scholar 

  175. Goswami, S. et al. Identification of invasion specific splice variants of the cytoskeletal protein Mena present in mammary tumor cells during invasion in vivo. Clin. Exp. Metastasis 26, 153–159 (2009).

    Article  CAS  Google Scholar 

  176. Gertler, F. & Condeelis, J. Metastasis: tumor cells becoming MENAcing. Trends Cell Biol. 21, 81–90 (2011).

    Article  CAS  Google Scholar 

  177. Leung, E. et al. Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway. Oncogene 36, 2680–2692 (2017).

    Article  CAS  Google Scholar 

  178. Hughes, V. S., Wiggins, J. M. & Siemann, D. W. Tumor oxygenation and cancer therapy-then and now. Br. J. Radiol. https://doi.org/10.1259/bjr.20170955 (2018).

    Article  Google Scholar 

  179. Agarwal, S. et al. Quantitative assessment of invasive mena isoforms (Menacalc) as an independent prognostic marker in breast cancer. Breast Cancer Res. 14, R124 (2012).

    Article  CAS  Google Scholar 

  180. Forse, C. L. et al. Menacalc, a quantitative method of metastasis assessment, as a prognostic marker for axillary node-negative breast cancer. BMC Cancer 15, 483 (2015).

    Article  Google Scholar 

  181. Sparano, J. A. et al. A metastasis biomarker (MetaSite Breast Score) is associated with distant recurrence in hormone receptor-positive, HER2-negative early-stage breast cancer. NPJ Breast Cancer 3, 42 (2017).

    Article  Google Scholar 

  182. Padera, T. P. et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296, 1883–1886 (2002).

    Article  CAS  Google Scholar 

  183. Pignatelli, J. et al. Macrophage-dependent tumor cell transendothelial migration is mediated by Notch1/MenaINV-initiated invadopodium formation. Sci. Rep. 6, 37874 (2016).

    Article  CAS  Google Scholar 

  184. Brown, D. et al. Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations. Nat. Commun. 8, 14944 (2017).

    Article  Google Scholar 

  185. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

    Article  CAS  Google Scholar 

  186. Harney, A. S. et al. The selective Tie2 inhibitor rebastinib blocks recruitment and function of Tie2(Hi) macrophages in breast cancer and pancreatic neuroendocrine tumors. Mol. Cancer Ther. 16, 2486–2501 (2017).

    Article  CAS  Google Scholar 

  187. Anampa Mesias, J. D. S., Oktay, M. H., Xue, X., Condeelis, J. & Sparano, J. A. Phase Ib study of rebastinib plus antitubulin therapy with paclitaxel or eribulin in patients with metastatic breast cancer (MBC). J. Clin. Oncol. 35 (Suppl. 15), TPS2611 (2017).

    Article  Google Scholar 

  188. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03717415 (2018).

  189. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02824575 (2016).

  190. Gustavson, M., Davis, W., Bronsther, O. & Gertler, F. Menacalc as an independent prognostic factor and predictor of metastasis in non-small cell lung cancer. Cancer Res. 75, 4331–4331 (2015).

    Article  Google Scholar 

  191. Naqvi, I. et al. Polymer-mediated inhibition of pro-invasive nucleic acid DAMPs and microvesicles limits pancreatic cancer metastasis. Mol. Ther. 26, 1020–1031 (2018).

    Article  CAS  Google Scholar 

  192. Shaked, Y. The pro-tumorigenic host response to cancer therapies. Nat. Rev. Cancer 19, 667–685 (2019).

    Article  CAS  Google Scholar 

  193. Yuan, F. et al. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 54, 3352–3356 (1994).

    CAS  Google Scholar 

  194. Yuan, F. et al. Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res. 54, 4564–4568 (1994).

    CAS  Google Scholar 

  195. Jain, R. K. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J. Clin. Oncol. 31, 2205–2218 (2013).

    Article  CAS  Google Scholar 

  196. Iyer, A. K., Khaled, G., Fang, J. & Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug. Discov. Today 11, 812–818 (2006).

    Article  CAS  Google Scholar 

  197. Fang, J., Nakamura, H. & Maeda, H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136–151 (2011).

    Article  CAS  Google Scholar 

  198. Durfee, P. N. et al. Mesoporous silica nanoparticle-supported lipid bilayers (protocells) for active targeting and delivery to individual leukemia cells. ACS Nano 10, 8325–8345 (2016).

    Article  CAS  Google Scholar 

  199. Ho, Y. J., Chang, Y. C. & Yeh, C. K. Improving nanoparticle penetration in tumors by vascular disruption with acoustic droplet vaporization. Theranostics 6, 392–403 (2016).

    Article  CAS  Google Scholar 

  200. Boyerinas, B. et al. Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood 121, 4821–4831 (2013). This work uses IVI to demonstrate that blocking bone marrow niche signals can release leukaemic cells from dormancy, rendering these cells chemosensitive, and subsequently leading to a decrease in minimal residual disease.

    Article  CAS  Google Scholar 

  201. Hirata, E. et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin beta1/FAK signaling. Cancer Cell 27, 574–588 (2015). This work uses IVI to show that targeted therapy can indirectly activate melanoma cell proliferation pathways by stimulating non-cancerous cells within the TME, thereby rendering the targeted therapy ineffective.

    Article  CAS  Google Scholar 

  202. Duarte, D. et al. Defining the in vivo characteristics of acute myeloid leukemia cells behavior by intravital imaging. Immunol. Cell Biol. 97, 229–235 (2019). By visualizing motility patterns of leukaemic cells with IVI, this work demonstrates that some leukaemias may respond poorly to chemotherapy owing to differences in bone marrow signals that allow the leukaemic cells to remain within the protective bone marrow niche.

    Article  Google Scholar 

  203. Hawkins, E. D. et al. T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments. Nature 538, 518–522 (2016). This work uses IVI to observe stochastic interactions between leukaemic cells and the bone marrow niche and remodelling of the endosteal space by leukaemic cells, which indicates that novel therapies aimed at targeting these interactions may be beneficial in combating therapy-resistant disease.

    Article  Google Scholar 

  204. Dings, R. P. et al. Enhancement of T-cell-mediated antitumor response: angiostatic adjuvant to immunotherapy against cancer. Clin. Cancer Res. 17, 3134–3145 (2011). Using multiple approaches, including IVI, this work demonstrates that anti-angiogenic therapy, via altering the expression of receptors on endothelial cells to which leukocytes bind, may increase extravasation of leukocytes into the melanoma TME and thus increase the antitumour immune response.

    Article  CAS  Google Scholar 

  205. Tanaka, K. et al. In vivo real-time imaging of chemotherapy response on the liver metastatic tumor microenvironment using multiphoton microscopy. Oncol. Rep. 28, 1822–1830 (2012).

    Article  CAS  Google Scholar 

  206. Shaked, Y. Balancing efficacy of and host immune responses to cancer therapy: the yin and yang effects. Nat. Rev. Clin. Oncol. 13, 611–626 (2016).

    Article  CAS  Google Scholar 

  207. Katz, O. B. & Shaked, Y. Host effects contributing to cancer therapy resistance. Drug Resist. Updat. 19, 33–42 (2015).

    Article  Google Scholar 

  208. Karagiannis, G. S., Condeelis, J. S. & Oktay, M. H. Chemotherapy-induced metastasis: mechanisms and translational opportunities. Clin. Exp. Metastasis 35, 269–284 (2018).

    Article  CAS  Google Scholar 

  209. Karagiannis, G. S., Condeelis, J. S. & Oktay, M. H. Chemotherapy-induced metastasis: molecular mechanisms, clinical manifestations, therapeutic interventions. Cancer Res. 79, 4567–4576 (2019).

    Article  CAS  Google Scholar 

  210. Okigami, M. et al. Intravital imaging of the effects of 5-fluorouracil on the murine liver microenvironment using 2-photon laser scanning microscopy. Oncol. Lett. 11, 2433–2439 (2016).

    Article  CAS  Google Scholar 

  211. Wyckoff, J., Gligorijevic, B., Entenberg, D., Segall, J. & Condeelis, J. High-resolution multiphoton imaging of tumors in vivo. Cold Spring Harb. Protoc. 2011, 1167–1184 (2011).

    Article  Google Scholar 

  212. Centonze, V. E. & White, J. G. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys. J. 75, 2015–2024 (1998).

    Article  CAS  Google Scholar 

  213. Vadakkan, T. J., Culver, J. C., Gao, L., Anhut, T. & Dickinson, M. E. Peak multiphoton excitation of mCherry using an optical parametric oscillator (OPO). J. Fluoresc. 19, 1103–1109 (2009).

    Article  CAS  Google Scholar 

  214. Makarov, N. S., Drobizhev, M. & Rebane, A. Two-photon absorption standards in the 550-1600 nm excitation wavelength range. Opt. Express 16, 4029–4047 (2008).

    Article  CAS  Google Scholar 

  215. Shcherbo, D. et al. Far-red fluorescent tags for protein imaging in living tissues. Biochem. J. 418, 567–574 (2009).

    Article  CAS  Google Scholar 

  216. Piatkevich, K. D. et al. Monomeric red fluorescent proteins with a large Stokes shift. Proc. Natl Acad. Sci. USA 107, 5369–5374 (2010).

    Article  CAS  Google Scholar 

  217. Kobat, D. et al. Deep tissue multiphoton microscopy using longer wavelength excitation. Opt. Express 17, 13354–13364 (2009).

    Article  Google Scholar 

  218. Sarder, P. et al. All-near-infrared multiphoton microscopy interrogates intact tissues at deeper imaging depths than conventional single- and two-photon near-infrared excitation microscopes. J. Biomed. Opt. 18, 106012 (2013).

    Article  Google Scholar 

  219. Wang, T. & Xu, C. Three-photon neuronal imaging in deep mouse brain. Optica 7, 947–960 (2020).

    Article  CAS  Google Scholar 

  220. Kong, L. & Cui, M. In vivo neuroimaging through the highly scattering tissue via iterative multi-photon adaptive compensation technique. Opt. Express 23, 6145–6150 (2015).

    Article  CAS  Google Scholar 

  221. Wang, C. et al. Multiplexed aberration measurement for deep tissue imaging in vivo. Nat. Methods 11, 1037–1040 (2014).

    Article  CAS  Google Scholar 

  222. Sinefeld, D., Paudel, H. P., Ouzounov, D. G., Bifano, T. G. & Xu, C. Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence. Opt. Express 23, 31472–31483 (2015).

    Article  Google Scholar 

  223. Rodriguez, C. et al. An adaptive optics module for deep tissue multiphoton imaging in vivo. Nat. Methods 18, 1259–1264 (2021).

    Article  CAS  Google Scholar 

  224. Bakker, G. J. et al. Intravital deep-tumor single-beam 3-photon, 4-photon, and harmonic microscopy. Elife https://doi.org/10.7554/eLife.63776 (2022).

    Article  Google Scholar 

  225. Miller, D. R., Jarrett, J. W., Hassan, A. M. & Dunn, A. K. Deep tissue imaging with multiphoton fluorescence microscopy. Curr. Opin. Biomed. Eng. 4, 32–39 (2017).

    Article  Google Scholar 

  226. Ritsma, L., Vrisekoop, N. & van Rheenen, J. In vivo imaging and histochemistry are combined in the cryosection labelling and intravital microscopy technique. Nat. Commun. 4, 2366 (2013). This work develops a microscopy technique, cryosection labelling and intravital microscopy, capable of correlating IVI videos with cryosections such that the same cells can be localized in each modality.

    Article  Google Scholar 

  227. Karreman, M. A. et al. Correlating intravital multi-photon microscopy to 3D electron microscopy of invading tumor cells using anatomical reference points. PLoS ONE 9, e114448 (2014).

    Article  Google Scholar 

  228. Karreman, M. A. et al. Fast and precise targeting of single tumor cells in vivo by multimodal correlative microscopy. J. Cell Sci. 129, 444–456 (2016). This work develops a microscopy technique capable of correlating IVI videos with electron microscopy by using X-ray computed tomography as an intermediate step to provide clearly identifiable structures in all modalities.

    CAS  Google Scholar 

  229. Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017).

    Article  Google Scholar 

  230. Karahalil, B. Overview of systems biology and omics technologies. Curr. Med. Chem. 23, 4221–4230 (2016).

    Article  CAS  Google Scholar 

  231. Scupakova, K. et al. Cellular resolution in clinical MALDI mass spectrometry imaging: the latest advancements and current challenges. Clin. Chem. Lab. Med. 58, 914–929 (2020).

    Article  CAS  Google Scholar 

  232. Wang, N., Li, X., Wang, R. & Ding, Z. Spatial transcriptomics and proteomics technologies for deconvoluting the tumor microenvironment. Biotechnol. J. 16, e2100041 (2021).

    Article  Google Scholar 

  233. Akturk, G., Sweeney, R., Remark, R., Merad, M. & Gnjatic, S. Multiplexed immunohistochemical consecutive staining on single slide (MICSSS): multiplexed chromogenic IHC assay for high-dimensional tissue analysis. Methods Mol. Biol. 2055, 497–519 (2020).

    Article  CAS  Google Scholar 

  234. Pascual-Reguant, A. et al. Multiplexed histology analyses for the phenotypic and spatial characterization of human innate lymphoid cells. Nat. Commun. 12, 1737 (2021).

    Article  CAS  Google Scholar 

  235. Deisseroth, K. et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 26, 10380–10386 (2006).

    Article  CAS  Google Scholar 

  236. Zhang, K. & Cui, B. Optogenetic control of intracellular signaling pathways. Trends Biotechnol. 33, 92–100 (2015).

    Article  Google Scholar 

  237. Rost, B. R., Schneider-Warme, F., Schmitz, D. & Hegemann, P. Optogenetic tools for subcellular applications in neuroscience. Neuron 96, 572–603 (2017).

    Article  CAS  Google Scholar 

  238. Manoilov, K. Y., Verkhusha, V. V. & Shcherbakova, D. M. A guide to the optogenetic regulation of endogenous molecules. Nat. Methods 18, 1027–1037 (2021).

    Article  CAS  Google Scholar 

  239. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  Google Scholar 

  240. Mills, E., Chen, X., Pham, E., Wong, S. & Truong, K. Engineering a photoactivated caspase-7 for rapid induction of apoptosis. ACS Synth. Biol. 1, 75–82 (2012).

    Article  CAS  Google Scholar 

  241. Reichhart, E., Ingles-Prieto, A., Tichy, A. M., McKenzie, C. & Janovjak, H. A phytochrome sensory domain permits receptor activation by red light. Angew. Chem. Int. Ed. 55, 6339–6342 (2016).

    Article  CAS  Google Scholar 

  242. Buckley, C. E. et al. Reversible optogenetic control of subcellular protein localization in a live vertebrate embryo. Dev. Cell 36, 117–126 (2016).

    Article  CAS  Google Scholar 

  243. Zhou, X. X., Chung, H. K., Lam, A. J. & Lin, M. Z. Optical control of protein activity by fluorescent protein domains. Science 338, 810–814 (2012).

    Article  CAS  Google Scholar 

  244. Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500, 472–476 (2013).

    Article  CAS  Google Scholar 

  245. Pathak, G. P. et al. Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using Arabidopsis cryptochrome 2. Nucleic Acids Res. 45, e167 (2017).

    Article  Google Scholar 

  246. Joshi, J., Rubart, M. & Zhu, W. Optogenetics: background, methodological advances and potential applications for cardiovascular research and medicine. Front. Bioeng. Biotechnol. 7, 466 (2019).

    Article  Google Scholar 

  247. Krueger, D. et al. Principles and applications of optogenetics in developmental biology. Development https://doi.org/10.1242/dev.175067 (2019).

    Article  Google Scholar 

  248. Weber, J. & Rad, R. Engineering CRISPR mouse models of cancer. Curr. Opin. Genet. Dev. 54, 88–96 (2019).

    Article  CAS  Google Scholar 

  249. Scott, G. J. & Gruzdev, A. Genome editing in mouse embryos with CRISPR/Cas9. Methods Mol. Biol. 1960, 23–40 (2019).

    Article  CAS  Google Scholar 

  250. Chen, Y. et al. How is flexible electronics advancing neuroscience research. Biomaterials 268, 120559 (2021).

    Article  CAS  Google Scholar 

  251. Samineni, V. K. et al. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain 158, 2108–2116 (2017).

    Article  Google Scholar 

  252. Mondello, S. E. et al. A micro-LED implant and technique for optogenetic stimulation of the rat spinal cord. Exp. Neurol. 335, 113480 (2021).

    Article  CAS  Google Scholar 

  253. Keshmiri Neghab, H. et al. The state of the art of biomedical applications of optogenetics. Lasers Surg. Med. 54, 202–216 (2022).

    Article  Google Scholar 

  254. Moghadam, M. R. & Chen, Y. P. Tracking leukocytes in intravital time lapse images using 3D cell association learning network. Artif. Intell. Med. 118, 102129 (2021).

    Article  Google Scholar 

  255. Khorshed, R. A. et al. Automated identification and localization of hematopoietic stem cells in 3D intravital microscopy data. Stem Cell Rep. 5, 139–153 (2015).

    Article  Google Scholar 

  256. Pizzagalli, D. U. et al. Leukocyte tracking database, a collection of immune cell tracks from intravital 2-photon microscopy videos. Sci. Data 5, 180129 (2018).

    Article  Google Scholar 

  257. Pizzagalli, D. U. et al. Characterization of the dynamic behavior of neutrophils following influenza vaccination. Front. Immunol. 10, 2621 (2019).

    Article  CAS  Google Scholar 

  258. Shaner, N. C., Steinbach, P. A. & Tsien, R. Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Article  CAS  Google Scholar 

  259. Shcherbakova, D. M., Stepanenko, O. V., Turoverov, K. K. & Verkhusha, V. V. Near-infrared fluorescent proteins: multiplexing and optogenetics across scales. Trends Biotechnol. 36, 1230–1243 (2018).

    Article  CAS  Google Scholar 

  260. Skala, M. C. et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc. Natl Acad. Sci. USA 104, 19494–19499 (2007).

    Article  CAS  Google Scholar 

  261. Kedrin, D. et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nat. Methods 5, 1019–1021 (2008).

    Article  CAS  Google Scholar 

  262. He, H. J. et al. Fluorescence resonance energy transfer-based method for detection of DNA binding activities of nuclear factor kappaB. Biotechniques 43, 93–98 (2007).

    Article  Google Scholar 

  263. Bravo-Cordero, J. J., Moshfegh, Y., Condeelis, J. & Hodgson, L. Live cell imaging of RhoGTPase biosensors in tumor cells. Methods Mol. Biol. 1046, 359–370 (2013).

    Article  Google Scholar 

  264. Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498 (2008).

    Article  CAS  Google Scholar 

  265. Keely, P. & Nain, A. Capturing relevant extracellular matrices for investigating cell migration. F1000Res 4, 1408 (2015).

    Article  Google Scholar 

  266. Weigelin, B., Bakker, G.-J. & Friedl, P. Intravital third harmonic generation microscopy of collective melanoma cell invasion: principles of interface guidance and microvesicle dynamics. Intravital 1, 32–43 (2012).

    Article  Google Scholar 

  267. Shan, S., Sorg, B. & Dewhirst, M. W. A novel rodent mammary window of orthotopic breast cancer for intravital microscopy. Microvasc. Res. 65, 109–117 (2003).

    Article  Google Scholar 

  268. Jeong, H. S. et al. Investigation of the lack of angiogenesis in the formation of lymph node metastases. J. Natl Cancer Inst. 107, djv155 (2015).

    Article  Google Scholar 

  269. Xu, H. T., Pan, F., Yang, G. & Gan, W. B. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat. Neurosci. 10, 549–551 (2007).

    Article  CAS  Google Scholar 

  270. Askoxylakis, V. et al. A cerebellar window for intravital imaging of normal and disease states in mice. Nat. Protoc. 12, 2251–2262 (2017).

    Article  CAS  Google Scholar 

  271. Figley, S. A. et al. A spinal cord window chamber model for in vivo longitudinal multimodal optical and acoustic imaging in a murine model. PLoS ONE 8, e58081 (2013).

    Article  CAS  Google Scholar 

  272. Fenrich, K. K., Weber, P., Rougon, G. & Debarbieux, F. Long- and short-term intravital imaging reveals differential spatiotemporal recruitment and function of myelomonocytic cells after spinal cord injury. J. Physiol. 591, 4895–4902 (2013).

    Article  CAS  Google Scholar 

  273. Black, J. Biological Performance of Materials: Fundamentals of Biocompatibility 4th edn (CRC Press, 2006).

  274. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Gruss Lipper Biophotonics Center and the Integrated Imaging Program at Albert Einstein College of Medicine, the EGL Charitable Foundation and grant number CA216248.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to David Entenberg, Maja H. Oktay or John S. Condeelis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks James Alvarez, Robert Hoffman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Acoustic vaporization

Vascular disruption induced by vaporization of microscale or nanoscale droplets using ultrasound sonication.

Chemotactic index

A metric capable of measuring the directed movement of an organism or entity in response to a chemical stimulus.

Collective migration

The coordinated movement of a large cluster of adherent tumour cells that retain homotypic cell–cell junctions out of the tumour mass and towards the stromal blood vasculature.

Confocal microscopy

A form of high-resolution optical microscopy that captures optical sections with single-cell resolution by collecting light only from a single slice of an otherwise intact tissue.

Fluorescence ratio imaging microscopy

An optical microscopy technique that measures the ratio of two different wavelengths to quantify shifts in the fluorescence spectra of probes without the influence of system-specific parameters (for example, detector quantum efficiency, excitation intensity and optical path length).

Liver sinusoids

Highly specialized endothelial cells forming fenestrated blood vessels of the hepatic microcirculation.

Machine vision

Imaging-based automatic inspection and analysis.

Magnetic resonance imaging

A relatively low resolution but deeply penetrating imaging technique, commonly used in the clinic, which measures the effect of strong magnetic fields on the nuclei of water molecules to form an image of the structure, and sometimes function, of tissues and organs.

Mosaicked pattern

A combination or merger of multiple high-resolution, high-magnification images of a sample into a single image, producing a low-magnification, high-resolution image.

Multiphoton microscopy

A form of optical microscopy that captures optical sections with single-cell resolution by using femtosecond pulsed lasers to limit signal generation to a single slice of an otherwise intact tissue.

Optical sections

Images of a single thin plane from within a thick sample captured by removal of out-of-focus light. The name originates from the similarity these images have to those obtained from mechanically sectioned and stained tissues.

Phosphorescence quenching microscopy

In the biological sciences, an optical microscopy technique for the sensitive evaluation of oxygen consumption using optical oxygen sensors whose phosphorescence changes with oxygen concentration.

Point spread function

The 3D diffraction pattern of light formed at the focus of a lens.

Positron emission tomography

A low-resolution but deeply penetrating imaging technique, commonly used in the clinic, which forms images of the physiological function (blood flow, metabolism, neurotransmitters and drug accumulation) of organs using the emissions of an intravenously injected radioactive drug (called a ‘tracer’).

Second-harmonic generation signal

Light originating from second‐order non‐linear optical scattering by non‐centrosymmetric molecules such as collagen or microtubules.

Vessel co-option

The ability of tumour cells to incorporate pre-existing vessels from surrounding tissues, rather than using angiogenesis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Entenberg, D., Oktay, M.H. & Condeelis, J.S. Intravital imaging to study cancer progression and metastasis. Nat Rev Cancer 23, 25–42 (2023). https://doi.org/10.1038/s41568-022-00527-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-022-00527-5

  • Springer Nature Limited

This article is cited by

Navigation