Skip to main content

Site-Specific Interrogation of Protein Structure and Stability

  • Protocol
  • First Online:
Protein Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2376))

  • 1636 Accesses

Abstract

To execute their function or activity, proteins need to possess variability in local electrostatic environment, solvent accessibility, structure, and stability. However, assessing any protein property in a site-specific manner is not easy since native spectroscopic signals often lack the needed specificity. One strategy that overcomes this limitation is to use unnatural amino acids that exhibit distinct spectroscopic features. In this chapter, we describe several such unnatural amino acids (UAAs) and their respective applications in site-specific interrogation of protein structure and stability using standard biophysical methods, including circular dichroism (CD), infrared (IR), and fluorescence spectroscopies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim PS, Baldwin RL (1990) Intermediates in the folding reactions of small proteins. Annu Rev Biochem 59:631–660

    Article  CAS  PubMed  Google Scholar 

  2. Garcia-Mira MM, Sadqi M, Fischer N, Sanchez-Ruiz JM, Muñoz V (2002) Experimental identification of downhill protein folding. Science 298:2191–2195

    Article  CAS  PubMed  Google Scholar 

  3. Tompa P (2012) Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci 37:509–516

    Article  CAS  PubMed  Google Scholar 

  4. Fersht A (1999) Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. W.H. Freeman

    Google Scholar 

  5. Berova N, Nakanishi K, Woody R (2000) Circular dichroism : principles and applications. Wiley-VCH

    Google Scholar 

  6. Greenfield NJ (1999) Applications of circular dichroism in protein and peptide analysis. Trends Anal Chem 18:236–244

    Article  CAS  Google Scholar 

  7. Yang H, Yang S, Kong J, Dong A, Yu S (2015) Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat Protoc 10:382–396

    Article  CAS  PubMed  Google Scholar 

  8. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer

    Book  Google Scholar 

  9. Adams PD, Chen Y, Ma K, Zagorski MG, Sönnichsen FD, McLaughlin ML, Barkley MD (2002) Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides. J Am Chem Soc 124:9278–9286

    Article  CAS  PubMed  Google Scholar 

  10. Chen Y, Liu B, Yu HT, Barkley MD (1996) The peptide bond quenches indole fluorescence. J Am Chem Soc 118:9271–9278

    Article  CAS  Google Scholar 

  11. Gudgin E, Lopez-Delgado R, Ware WR (1981) The tryptophan fluorescence lifetime puzzle. A study of decay times in aqueous solution as a function of pH and buffer composition. Can J Chem 59:1037–1044

    Article  CAS  Google Scholar 

  12. Petrich JW, Chang MC, McDonald DB, Fleming GR (1983) On the origin of nonexponential fluorescence decay in tryptophan and its derivatives. J Am Chem Soc 105:3824–3832

    Article  CAS  Google Scholar 

  13. Decatur SM (2006) Elucidation of residue-level structure and dynamics of polypeptides via isotope-edited infrared spectroscopy. Acc Chem Res 39:169–175

    Article  CAS  PubMed  Google Scholar 

  14. Ma J, Pazos IM, Zhang W, Culik RM, Gai F (2015) Site-specific infrared probes of proteins. Annu Rev Phys Chem 66:357–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abaskharon RM, Brown SP, Zhang W, Chen J, Smith AB III, Gai F (2017) Isotope-labeled aspartate sidechain as a non-perturbing infrared probe: application to investigate the dynamics of a carboxylate buried inside a protein. Chem Phys Lett 683:193–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Levin DE, Schmitz AJ, Hines SM, Hines KJ, Tucker MJ, Brewer SE, Fenlon EE (2016) Synthesis and evaluation of the sensitivity and vibrational lifetimes of thiocyanate and selenocyanate infrared reporters. RSC Adv 6:36231–36237

    Article  CAS  Google Scholar 

  17. Taskent-Sezgin H, Chung J, Banerjee PS, Nagarajan S, Dyer RB, Carrico I, Raleigh DP (2010) Azidohomoalanine: a conformationally sensitive IR probe of protein folding, protein structure, and electrostatics. Angew Chem Int Ed 49:7473–7475

    Article  CAS  Google Scholar 

  18. Osborne DG, Dunbar JA, Lapping JG, White AM, Kubarych KJ (2013) Site-specific measurements of lipid membrane interfacial water dynamics with multidimensional infrared spectroscopy. J Phys Chem B 117:15407–15414

    Article  CAS  PubMed  Google Scholar 

  19. Nie B, Stutzman J, Xie A (2005) A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues. Biophys J 88:2833–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Suydam IT, Boxer SG (2003) Vibrational stark effects calibrate the sensitivity of vibrational probes for electric fields in proteins. Biochemistry 42:12050–12055

    Article  CAS  PubMed  Google Scholar 

  21. Levinson NM, Bolte EE, Miller CS, Corcelli SA, Boxer SG (2011) Phosphate vibrations probe local electric fields and hydration in biomolecules. J Am Chem Soc 133:13236–13239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kozi M, Garrett-Roe S, Hamm P (2008) 2D-IR spectroscopy of the sulfhydryl band of cysteines in the hydrophobic core of proteins. J Phys Chem B 112:7645–7650

    Article  Google Scholar 

  23. Zimmermann JO, Thielges MC, Yu W, Dawson PE, Romesberg FE (2011) Carbon-deuterium bonds as site-specific and nonperturbative probes for time-resolved studies of protein dynamics and folding. J Phys Chem Lett 2:412–416

    Article  CAS  Google Scholar 

  24. King JT, Arthur EJ, Brooks CL, Kubarych KJ (2012) Site-specific hydration dynamics of globular proteins and the role of constrained water in solvent exchange with amphiphilic cosolvents. J Phys Chem B 116:5604–5611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. King JT, Kubarych KJ (2012) Site-specific coupling of hydration water and protein flexibility studied in solution with ultrafast 2D-IR spectroscopy. J Am Chem Soc 134:18705–18712

    Article  CAS  PubMed  Google Scholar 

  26. Woys AM, Mukherjee SS, Skoff DR, Moran SD, Zanni MT (2013) A strongly absorbing class of non-natural labels for probing protein electrostatics and solvation with FTIR and 2D IR spectroscopies. J Phys Chem B 117:5009–5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pazos IM, Ghosh A, Tucker MJ, Gai F (2014) Ester carbonyl vibration as a sensitive probe of protein local electric field. Angew Chem Int Ed 126:6194–6198

    Article  Google Scholar 

  28. Fried SD, Bagchi S, Boxer SG (2013) Measuring electrostatic fields in both hydrogen-bonding and non- hydrogen-bonding environments using carbonyl vibrational probes. J Am Chem Soc 135:11181–11192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bazewicz CG, Liskov MT, Hines KJ, Brewer SH (2013) Sensitive, site-specific, and stable vibrational probe of local protein environments: 4-Azidomethyl-L-Phenylalanine. J Phys Chem B 117:8987–8993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bloem R, Koziol K, Waldauer SA, Buchli B, Walser R, Samatanga B, Jelesarov I, Hamm P (2012) Ligand binding studied by 2D IR spectroscopy using the azidohomoalanine label. J Phys Chem B 116:13705–13712

    Article  CAS  PubMed  Google Scholar 

  31. Choi JH, Raleigh D, Cho M (2011) Azidohomoalanine is a useful infrared probe for monitoring local electrostatistics and side-chain solvation in proteins. J Phys Chem Lett 2:2158–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tucker MJ, Kim YS, Hochstrasser RM (2009) 2D IR photon echo study of the anharmonic coupling in the OCN region of phenyl cyanate. Chem Phys Lett 470:80–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Waegele MM, Tucker MJ, Gai F (2009) 5-Cyanotryptophan as an infrared probe of local hydration status of proteins. Chem Phys Lett 478:249–253

    Google Scholar 

  34. Fafarman AT, Webb LJ, Chuang JI, Boxer SG (2006) Site-specific conversion of cysteine thiols into thiocyanate creates an IR probe for electric fields in proteins. J Am Chem Soc 128:13356–13357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alfieri KN, Vienneau AR, Londergan CH (2011) Using infrared spectroscopy of cyanylated cysteine to map the membrane binding structure and orientation of the hybrid antimicrobial peptide CM15. Biochemistry 50:11097–11108

    Article  CAS  PubMed  Google Scholar 

  36. Gao Y, Zou Y, Ma Y, Wang D, Sun Y, Ma G (2016) Infrared probe technique reveals a millipede-like structure for Aβ (8–28) amyloid fibril. Langmuir 32:937–946

    Article  CAS  PubMed  Google Scholar 

  37. Getahun Z, Huang C, Wang T, De León B, DeGrado WF, Gai F (2003) Using nitrile-derivatized amino acids as infrared probes of local environment. J Am Chem Soc 125:405–411

    Article  CAS  PubMed  Google Scholar 

  38. van Wilderen LJ, Brunst H, Gustmann H, Wachtveitl J, Broos J, Bredenbeck J (2018) Cyano-tryptophans as dual infrared and fluorescence spectroscopic labels to assess structural dynamics in proteins. Phys Chem Chem Phys 20:19906–19915

    Google Scholar 

  39. Jia B, Sun Y, Yang L, Yu Y, Fan H, Ma G (2018) A structural model of the hierarchical assembly of an amyloid nanosheet by an infrared probe technique. Phys Chem Chem Phys 20(43):27261–27271

    Google Scholar 

  40. Huang XY, You M, Ran GL, Fan HR, Zhang WK (2018) Ester-derivatized indoles as fluorescent and infrared probes for hydration environments. Chin J Chem Phys 31:477–484

    Google Scholar 

  41. Smith EE, Linderman BY, Luskin AC, Brewer SH (2011) Probing local environments with the infrared probe: L-4-nitrophenylalanine. J Phys Chem B 115:2380–2385

    Article  CAS  PubMed  Google Scholar 

  42. Deiters A, Cropp TA, Mukherji M, Chin JW, Anderson JC, Schultz PG (2003) Adding amino acids with novel reactivity to the genetic code of Saccharomyces Cerevisiae. J Am Chem Soc 125:11782–11783

    Article  CAS  PubMed  Google Scholar 

  43. Deiters A, Cropp TA, Summerer D, Mukherji M, Schultz PG (2004) Site-specific PEGylation of proteins containing unnatural amino acids. Bioorg Med Chem Lett 14:5743–5745

    Article  CAS  PubMed  Google Scholar 

  44. Wang L, Zhang Z, Brock A, Schultz PG (2003) Addition of the keto functional group to the genetic code of Escherichia coli. Proc Natl Acad Sci 100:56–61

    Article  CAS  PubMed  Google Scholar 

  45. Ahmed IA, Gai F (2017) Simple method to introduce an ester infrared probe into proteins. Protein Sci 26:375–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jo H, Culik RM, Korendovych IV, DeGrado WF, Gai F (2010) Selective incorporation of nitrile-based infrared probes into proteins via cysteine alkylation. Biochemistry 49:10354–10356

    Article  CAS  PubMed  Google Scholar 

  47. Miyake-Stoner SJ, Miller AM, Hammill JT, Peeler JC, Hess KR, Mehl RA, Brewer SH (2009) Probing protein folding using site-specifically encoded unnatural amino acids as FRET donors with tryptophan. Biochemistry 48:5953–5962

    Article  CAS  PubMed  Google Scholar 

  48. Schultz KC, Supekova L, Ryu Y, Xie J, Perera R, Schultz PG (2006) A genetically encoded infrared probe. J Am Chem Soc 128:13984–13985

    Article  CAS  PubMed  Google Scholar 

  49. Berova N, Di Bari L, Pescitelli G (2007) Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. Chem Soc Rev 36:914–931

    Article  CAS  PubMed  Google Scholar 

  50. Gasymov OK, Abduragimov AR, Glasgow BJ (2015) Double tryptophan exciton probe to gauge proximal side chains in proteins: augmentation at low temperature. J Phys Chem B 119:3962–3968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cochran AG, Skelton NJ, Starovasnik MA (2001) Tryptophan zippers: stable, monomeric beta-hairpins. Proc Natl Acad Sci U S A 98:5578–5583

    Google Scholar 

  52. Mukherjee D, Gai F (2016) Exciton circular dichroism couplet arising from nitrile-derivatized aromatic residues as a structural probe of proteins. Anal Biochem 507:74–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Neurath H, Greensteix JP, Putnam FW, Erickson JO (1944) The chemistry of protein denaturation. Chem Rev 34:157–265

    Article  CAS  Google Scholar 

  54. Tucker MJ, Oyola R, Gai F (2006) A novel fluorescent probe for protein binding and folding studies:p-cyano-phenylalanine. Biopolymers 83:571–576

    Article  CAS  PubMed  Google Scholar 

  55. Markiewicz BN, Mukherjee D, Troxler T, Gai F (2016) Utility of 5-cyanotryptophan fluorescence as a sensitive probe of protein hydration. J Phys Chem B 120:936–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hilaire MR, Ahmed IA, Lin CW, Jo H, DeGrado WF, Gai F (2017) Blue fluorescent amino acid for biological spectroscopy and microscopy. Proc Natl Acad Sci U S A 114:6005–6009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mukherjee D, Ortiz Rodriguez LI, Hilaire MR, Troxler T, Gai F (2018) 7-cyanoindole fluorescence as a local hydration reporter: application to probe the microheterogeneity of nine water-organic binary mixtures. Phys Chem Chem Phys 20:2527–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hilaire MR, Mukherjee D, Troxler T, Gai F (2017) Solvent dependence of cyanoindole fluorescence lifetime. Chem Phys Lett 685:133–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Martin JP, Fetto NR, Tucker MJ (2016) Comparison of biological chromophores: photophysical properties of cyanophenylalanine derivatives. Phys Chem Chem Phys 2016(18):20750–20757

    Article  Google Scholar 

  60. Soumillion P, Jespers L, Vervoort J, Fastrez J (1995) Biosynthetic incorporation of 7-azatryptophan into the phage lambda lysozyme: estimation of tryptophan accessibility, effect on enzymatic activity and protein stability. Protein Eng Des Sel 8:451–456

    Google Scholar 

  61. Schlesinger S (1968) The effect of amino acid analogues on alkaline phosphatase. Formation in Escherichia coli K-12. II. Replacement of tryptophan by azatryptophan and by tryptazan. J Biol Chem 243:3877–3883

    Article  CAS  PubMed  Google Scholar 

  62. Ross JB, Senear DF, Waxman E, Kombo BB, Rusinova E, Huang YT, Laws WR, Hasselbacher CA (1992) Spectral enhancement of proteins: biological incorporation and fluorescence characterization of 5-hydroxytryptophan in bacteriophage lambda cI repressor. Proc Natl Acad Sci U S A 89:12023–12027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guharay J, Sengupta PK (1996) Characterization of the fluorescence emission properties of 7-azatryptophan in reverse micellar environments. Biochem Biophys Res Commun 219:388–392

    Article  CAS  PubMed  Google Scholar 

  64. Talukder P, Chen S, Roy B, Yakovchuk P, Spiering MM, Alam MP, Madathil MM, Bhattacharya C, Benkovic SJ, Hecht SM (2015) Cyanotryptophans as novel fluorescent probes for studying protein conformational changes and DNA-protein interaction. Biochemistry 54:7457–7469

    Article  CAS  PubMed  Google Scholar 

  65. Moroz YS, Binder W, Nygren P, Caputo GA, Korendovych IV (2013) Painting proteins blue: β-(1-azulenyl)-l-alanine as a probe for studying protein–protein interactions. Chem Commun 49:490–492

    Article  CAS  Google Scholar 

  66. Shao J, Korendovych IV, Broos J (2015) Biosynthetic incorporation of the azulene moiety in proteins with high efficiency. Amino Acids 47:213–216

    Article  CAS  PubMed  Google Scholar 

  67. Szymańska A, Wegner K, Łankiewicz L (2003) Synthesis of N-[(tert-Butoxy)carbonyl]-3-(9,10-dihydro-9-oxoacridin-2-yl)-L-alanine, a new fluorescent amino acid derivative. Helv Chim Acta 86:3326–3331

    Article  Google Scholar 

  68. Speight LC, Muthusamy AK, Goldberg JM, Warner JB, Wissner RF, Willi TS, Woodman BF, Mehl RA, Petersson EJ (2013) Efficient synthesis and in vivo incorporation of acridon-2-ylalanine, a fluorescent amino acid for lifetime and förster resonance energy transfer/luminescence resonance energy transfer studies. J Am Chem Soc 135:18806–18814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Glasscock JM, Zhu Y, Chowdhury P, Tang J, Gai F (2008) Using an amino acid fluorescence resonance energy transfer pair to probe protein unfolding: application to the villin headpiece subdomain and the LysM domain. Biochemistry 47:11070–11076

    Google Scholar 

  70. Rogers JMG, Lippert LG, Gai F (2010) Non-natural amino acid fluorophores for one- and two-step fluorescence resonance energy transfer applications. Anal Biochem 399:182–189

    Article  CAS  PubMed  Google Scholar 

  71. Peran I, Watson MD, Bilsel O, Raleigh DP (2016) Selenomethionine, p-cyanophenylalanine pairs provide a convenient, sensitive, non-perturbing fluorescent probe of local helical structure. Chem Commun 52:2055–2058

    Article  CAS  Google Scholar 

  72. Watson MD, Peran I, Raleigh DP (2016) A non-perturbing probe of coiled coil formation based on electron transfer mediated fluorescence quenching. Biochemistry 55:3685–3691

    Article  CAS  PubMed  Google Scholar 

  73. Mintzer MR, Troxler T, Gai F (2015) p-cyanophenylalanine and selenomethionine constitute a useful fluorophore–quencher pair for short distance measurements: application to polyproline peptides. Phys Chem Chem Phys 17:7881–7887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wissner RF, Batjargal S, Fadzen CM, Petersson EJ (2013) Labeling proteins with fluorophore/thioamide förster resonant energy transfer pairs by combining unnatural amino acid mutagenesis and native chemical ligation. J Am Chem Soc 135:6529–6540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the National Institutes of Health (GM-065978 and P41-GM104605). I.A.A. is supported by a NIH T32 Interdisciplinary Cardiovascular Training Grant (T32-HL007954).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mukherjee, D., Ahmed, I.A., Gai, F. (2022). Site-Specific Interrogation of Protein Structure and Stability. In: Muñoz, V. (eds) Protein Folding. Methods in Molecular Biology, vol 2376. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1716-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1716-8_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1715-1

  • Online ISBN: 978-1-0716-1716-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics