Skip to main content

Computational Phosphorylation Network Reconstruction: An Update on Methods and Resources

  • Protocol
  • First Online:
Plant Phosphoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2358))

Abstract

Most proteins undergo some form of modification after translation, and phosphorylation is one of the most relevant and ubiquitous post-translational modifications. The succession of protein phosphorylation and dephosphorylation catalyzed by protein kinase and phosphatase, respectively, constitutes a key mechanism of molecular information flow in cellular systems. The protein interactions of kinases, phosphatases, and their regulatory subunits and substrates are the main part of phosphorylation networks. To elucidate the landscape of phosphorylation events has been a central goal pursued by both experimental and computational approaches. Substrate specificity (e.g., sequence, structure) or the phosphoproteome has been utilized in an array of different statistical learning methods to infer phosphorylation networks. In this chapter, different computational phosphorylation network inference-related methods and resources are summarized and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao S, Xu W, Jiang W et al (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000–1004. https://doi.org/10.1126/science.1179689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Deribe YL, Pawson T, Dikic I (2010) Post-translational modifications in signal integration. Nat Struct Mol Biol 17:666–672. https://doi.org/10.1038/nsmb.1842

    Article  CAS  PubMed  Google Scholar 

  3. Müller MM (2018) Post-translational modifications of protein backbones: unique functions, mechanisms, and challenges. Biochemistry 57:177–185. https://doi.org/10.1021/acs.biochem.7b00861

    Article  CAS  PubMed  Google Scholar 

  4. Bateman A, Martin MJ, O’Donovan C et al (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169. https://doi.org/10.1093/nar/gkw1099

    Article  CAS  Google Scholar 

  5. Venne AS, Kollipara L, Zahedi RP (2014) The next level of complexity: crosstalk of posttranslational modifications. Proteomics 14:513–524. https://doi.org/10.1002/pmic.201300344

    Article  CAS  PubMed  Google Scholar 

  6. Wang Z, Cole PA (2014) Catalytic mechanisms and regulation of protein kinases. Methods Enzymol 548:1–21. https://doi.org/10.1016/B978-0-12-397918-6.00001-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Denu JM, Stuckey JA, Saper MA, Dixon JE (1996) Form and function in protein dephosphorylation. Cell 87:361–364. https://doi.org/10.1016/S0092-8674(00)81356-2

    Article  CAS  PubMed  Google Scholar 

  8. Hunter T (1995) Protein kinases and phosphatases: the Yin and Yang of protein phosphorylation and signaling. Cell 80:225–236. https://doi.org/10.1016/0092-8674(95)90405-0

    Article  CAS  PubMed  Google Scholar 

  9. Köhn M (2020) Turn and face the strange: § a new view on phosphatases. ACS Cent Sci 6:467–477. https://doi.org/10.1021/acscentsci.9b00909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Manning G, Whyte DB, Martinez R et al (2002) The protein kinase complement of the human genome. Science 298:1912–1934. https://doi.org/10.1126/science.1075762

    Article  CAS  PubMed  Google Scholar 

  11. Li X, Wilmanns M, Thornton J, Köhn M (2013) Elucidating human phosphatase-substrate networks. Sci Signal 6:rs10. https://doi.org/10.1126/scisignal.2003203

    Article  CAS  PubMed  Google Scholar 

  12. Nita-Lazar A, Saito-Benz H, White FM (2008) Quantitative phosphoproteomics by mass spectrometry: past, present, and future. Proteomics 8:4433–4443. https://doi.org/10.1002/pmic.200800231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mok J, Zhu X, Snyder M (2011) Dissecting phosphorylation networks: lessons learned from yeast. Expert Rev Proteomics 8:775–786. https://doi.org/10.1586/epr.11.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu XN, Rodriguez CS, Pertl-Obermeyer H et al (2013) Sucrose-induced receptor kinase SIRK1 regulates a plasma membrane aquaporin in Arabidopsis. Mol Cell Proteomics 12:2856–2873. https://doi.org/10.1074/mcp.M113.029579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Imamura H, Yachie N, Saito R et al (2010) Towards the systematic discovery of signal transduction networks using phosphorylation dynamics data. BMC Bioinformatics 11:232. https://doi.org/10.1186/1471-2105-11-232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Duan G, Walther D, Schulze WX (2013) Reconstruction and analysis of nutrient-induced phosphorylation networks in Arabidopsis thaliana. Front Plant Sci 4:540. https://doi.org/10.3389/fpls.2013.00540

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kumar M, Gouw M, Michael S et al (2020) ELM-the eukaryotic linear motif resource in 2020. Nucleic Acids Res 48:D296–D306. https://doi.org/10.1093/nar/gkz1030

    Article  CAS  PubMed  Google Scholar 

  18. Amanchy R, Periaswamy B, Mathivanan S et al (2007) A curated compendium of phosphorylation motifs. Nat Biotechnol 25:285–286. https://doi.org/10.1038/nbt0307-285

    Article  CAS  PubMed  Google Scholar 

  19. Durek P, Schudoma C, Weckwerth W et al (2009) Detection and characterization of 3D-signature phosphorylation site motifs and their contribution towards improved phosphorylation site prediction in proteins. BMC Bioinformatics 10:117. https://doi.org/10.1186/1471-2105-10-117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Seet BT, Dikic I, Zhou MM, Pawson T (2006) Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol 7:473–483. https://doi.org/10.1038/nrm1960

    Article  CAS  PubMed  Google Scholar 

  21. Del-Toro N, Dumousseau M, Orchard S et al (2013) A new reference implementation of the PSICQUIC web service. Nucleic Acids Res 41:W601–W606. https://doi.org/10.1093/nar/gkt392

    Article  PubMed  PubMed Central  Google Scholar 

  22. Turinsky AL, Razick S, Turner B et al (2011) Interaction databases on the same page. Nat Biotechnol 29:391–393. https://doi.org/10.1038/nbt.1867

    Article  CAS  PubMed  Google Scholar 

  23. Mishra GR (2006) Human protein reference database—2006 update. Nucleic Acids Res 34:D411–D414. https://doi.org/10.1093/nar/gkj141

    Article  CAS  PubMed  Google Scholar 

  24. Li P, Zang W, Li Y et al (2011) AtPID: the overall hierarchical functional protein interaction network interface and analytic platform for Arabidopsis. Nucleic Acids Res 39:D1130–D1133. https://doi.org/10.1093/nar/gkq959

    Article  CAS  PubMed  Google Scholar 

  25. Klopffleisch K, Phan N, Augustin K et al (2011) Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis. Mol Syst Biol 7:1–7. https://doi.org/10.1038/msb.2011.66

    Article  Google Scholar 

  26. Zhang QC, Petrey D, Deng L et al (2012) Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature 490:556–560. https://doi.org/10.1038/nature11503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470. https://doi.org/10.1126/science.270.5235.467

    Article  CAS  PubMed  Google Scholar 

  28. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207. https://doi.org/10.1038/nature01511

    Article  CAS  PubMed  Google Scholar 

  29. Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48:155–171. https://doi.org/10.1023/A:1013713905833

    Article  CAS  PubMed  Google Scholar 

  30. Stolovitzky G, Monroe D, Califano A (2007) Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Ann N Y Acad Sci 1115:1–22. https://doi.org/10.1196/annals.1407.021

    Article  PubMed  Google Scholar 

  31. Duan G, Walther D (2015) Computational phosphorylation network reconstruction: methods and resources. Methods Mol Biol 1306:177–194. https://doi.org/10.1007/978-1-4939-2648-0_14

    Article  CAS  PubMed  Google Scholar 

  32. Pe’er D (2005) Bayesian network analysis of signaling networks: a primer. Sci STKE 2005:pl4. https://doi.org/10.1126/stke.2812005pl4

    Article  PubMed  Google Scholar 

  33. Chen WW, Schoeberl B, Jasper PJ et al (2009) Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol Syst Biol 5:239. https://doi.org/10.1038/msb.2008.74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Duan G, Li X, Köhn M (2015) The human DEPhOsphorylation database DEPOD: a 2015 update. Nucleic Acids Res 43:D531–D535. https://doi.org/10.1093/nar/gku1009

    Article  CAS  PubMed  Google Scholar 

  35. Munk S, Refsgaard JC, Olsen JV, Jensen LJ (2016) From phosphosites to kinases. Methods Mol Biol 1355:307–321

    Article  CAS  PubMed  Google Scholar 

  36. Zou L, Wang M, Shen Y et al (2013) PKIS: computational identification of protein kinases for experimentally discovered protein phosphorylation sites. BMC Bioinformatics 14:247. https://doi.org/10.1186/1471-2105-14-247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Trost B, Kusalik A (2011) Computational prediction of eukaryotic phosphorylation sites. Bioinformatics 27:2927–2935. https://doi.org/10.1093/bioinformatics/btr525

    Article  CAS  PubMed  Google Scholar 

  38. Linding R, Jensen LJ, Pasculescu A et al (2008) NetworKIN: a resource for exploring cellular phosphorylation networks. Nucleic Acids Res 36:D695–D699. https://doi.org/10.1093/nar/gkm902

    Article  CAS  PubMed  Google Scholar 

  39. Song C, Ye M, Liu Z et al (2012) Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol Cell Proteomics 11:1070–1083. https://doi.org/10.1074/mcp.M111.012625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li X, Köhn M (2016) Prediction and verification of novel peptide targets of protein tyrosine phosphatase 1B. Bioorg Med Chem 24:3255–3258. https://doi.org/10.1016/j.bmc.2016.03.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tudor CO, Arighi CN, Wang Q et al (2012) The eFIP system for text mining of protein interaction networks of phosphorylated proteins. Database (Oxford) 2012:bas044. https://doi.org/10.1093/database/bas044

    Article  CAS  Google Scholar 

  42. Duan G, Walther D (2015) The roles of post-translational modifications in the context of protein interaction networks. PLoS Comput Biol 11:e1004049. https://doi.org/10.1371/journal.pcbi.1004049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yachie N, Saito R, Sugiyama N et al (2011) Integrative features of the yeast phosphoproteome and protein-protein interaction map. PLoS Comput Biol 7:e1001064. https://doi.org/10.1371/journal.pcbi.1001064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Matsuoka S, Ballif BA, Smogorzewska A et al (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160–1166. https://doi.org/10.1126/science.1140321

    Article  CAS  PubMed  Google Scholar 

  45. Huang PH, Mukasa A, Bonavia R et al (2007) Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci U S A 104:12867–12872. https://doi.org/10.1073/pnas.0705158104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. White FM (2008) Quantitative phosphoproteomic analysis of signaling network dynamics. Curr Opin Biotechnol 19:404–409. https://doi.org/10.1016/j.copbio.2008.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Niittylä T, Fuglsang AT, Palmgren MG et al (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol Cell Proteomics 6:1711–1726. https://doi.org/10.1074/mcp.M700164-MCP200

    Article  CAS  PubMed  Google Scholar 

  48. Ahmad FH, Wu XN, Stintzi A et al (2019) The systemin signaling cascade as derived from time course analyses of the systemin-responsive phosphoproteome. Mol Cell Proteomics 18:1526–1542. https://doi.org/10.1074/mcp.RA119.001367

    Article  CAS  Google Scholar 

  49. Locasale JW, Wolf-Yadlin A (2009) Maximum entropy reconstructions of dynamic signaling networks from quantitative proteomics data. PLoS One 4:e6522. https://doi.org/10.1371/journal.pone.0006522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ekins S, Xu JJ (2008) Drug efficacy, safety, and biologics discovery: emerging technologies and tools. In: Ekins S, Xu JJ (eds) Drug efficacy, safety, and biologics discovery: emerging technologies and tools. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp 1–408

    Chapter  Google Scholar 

  51. Gaudet S, Janes KA, Albeck JG et al (2005) A compendium of signals and responses triggered by prodeath and prosurvival cytokines. Mol Cell Proteomics 4:1569–1590. https://doi.org/10.1074/mcp.M500158-MCP200

    Article  CAS  PubMed  Google Scholar 

  52. Janes KA, Albeck JG, Gaudet S et al (2005) Cell signaling: a systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310:1646–1653. https://doi.org/10.1126/science.1116598

    Article  CAS  PubMed  Google Scholar 

  53. Wagner J, Lauffenburger D (2007) Bayesian network inference of phosphoproteomic signaling networks. In: Baw-Uai09.Intel-Research.Net

    Google Scholar 

  54. Sachs K, Perez O, Pe’er D et al (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science 308:523–529. https://doi.org/10.1126/science.1105809

    Article  CAS  PubMed  Google Scholar 

  55. Ciaccio MF, Wagner JP, Chuu CP et al (2010) Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat Methods 7:148–155. https://doi.org/10.1038/nmeth.1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Saez-Rodriguez J, Alexopoulos LG, Epperlein J et al (2009) Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol Syst Biol 5:331. https://doi.org/10.1038/msb.2009.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA (2010) Logic-based models for the analysis of cell signaling networks. Biochemistry 49:3216–3224. https://doi.org/10.1021/bi902202q

    Article  CAS  PubMed  Google Scholar 

  58. Santos SDM, Verveer PJ, Bastiaens PIH (2007) Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol 9:324–330. https://doi.org/10.1038/ncb1543

    Article  CAS  PubMed  Google Scholar 

  59. Nelander S, Wang W, Nilsson B et al (2008) Models from experiments: combinatorial drug perturbations of cancer cells. Mol Syst Biol 4:216. https://doi.org/10.1038/msb.2008.53

    Article  PubMed  PubMed Central  Google Scholar 

  60. Patrick R, Le Cao KA, Kobe B, Boden M (2015) PhosphoPICK: Modelling cellular context to map kinase-substrate phosphorylation events. Bioinformatics 31:382–389. https://doi.org/10.1093/bioinformatics/btu663

    Article  CAS  PubMed  Google Scholar 

  61. Santra T, Kholodenko B, Kolch W (2012) An integrated bayesian framework for identifying phosphorylation networks in stimulated cells. Adv Exp Med Biol 736:59–80. https://doi.org/10.1007/978-1-4419-7210-1_3

    Article  CAS  PubMed  Google Scholar 

  62. Hlavacek WS, Faeder JR, Blinov ML et al (2006) Rules for modeling signal-transduction systems. Sci STKE 2006:re6. https://doi.org/10.1126/stke.3442006re6

    Article  PubMed  Google Scholar 

  63. Danos V, Feret J, Fontana W et al (2007) Rule-based modelling of cellular signalling. In: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) LNCS, vol 4703. Springer-Verlag, Berlin, Heidelberg, pp 17–41. https://doi.org/10.1007/978-3-540-74407-8_3

    Chapter  Google Scholar 

  64. Chen WM, Danziger SA, Chiang JH, Aitchison JD (2013) PhosphoChain: a novel algorithm to predict kinase and phosphatase networks from high-throughput expression data. Bioinformatics 29:2435–2444. https://doi.org/10.1093/bioinformatics/btt387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen X, Shi SP, Suo SB et al (2015) Proteomic analysis and prediction of human phosphorylation sites in subcellular level reveal subcellular specificity. Bioinformatics 31:194–200. https://doi.org/10.1093/bioinformatics/btu598

    Article  CAS  PubMed  Google Scholar 

  66. van Wijk KJ, Friso G, Walther D, Schulze WX (2014) Meta-analysis of Arabidopsis thaliana phospho-proteomics data reveals compartmentalization of phosphorylation motifs. Plant Cell 26:2367–2389. https://doi.org/10.1105/tpc.114.125815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Watson NA, Cartwright TN, Lawless C et al (2020) Kinase inhibition profiles as a tool to identify kinases for specific phosphorylation sites. Nat Commun 11:1684. https://doi.org/10.1038/s41467-020-15428-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613. https://doi.org/10.1093/nar/gky1131

    Article  CAS  PubMed  Google Scholar 

  69. Chatr-Aryamontri A, Oughtred R, Boucher L et al (2017) The BioGRID interaction database: 2017 update. Nucleic Acids Res 45:D369–D379. https://doi.org/10.1093/nar/gkw1102

    Article  CAS  PubMed  Google Scholar 

  70. Kerrien S, Aranda B, Breuza L et al (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40:D841–D846. https://doi.org/10.1093/nar/gkr1088

    Article  CAS  PubMed  Google Scholar 

  71. Xenarios I, Salwínski Ł, Duan XJ et al (2002) DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30:303–305. https://doi.org/10.1093/nar/30.1.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Orchard S, Kerrien S, Abbani S et al (2012) Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nat Methods 9:345–350. https://doi.org/10.1038/nmeth.1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559. https://doi.org/10.1186/1471-2105-9-559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Meyer PE, Lafitte F, Bontempi G (2008) Minet: a r/bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics 9:461. https://doi.org/10.1186/1471-2105-9-461

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bonneau R, Reiss DJ, Shannon P et al (2006) The inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol 7:R36. https://doi.org/10.1186/gb-2006-7-5-r36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jung N, Bertrand F, Bahram S et al (2014) Cascade: a R package to study, predict and simulate the diffusion of a signal through a temporal gene network. Bioinformatics 30:571–573. https://doi.org/10.1093/bioinformatics/btt705

    Article  CAS  PubMed  Google Scholar 

  77. Peng CH, Jiang YZ, Tai AS et al (2014) Causal inference of gene regulation with subnetwork assembly from genetical genomics data. Nucleic Acids Res 42:2803–2819. https://doi.org/10.1093/nar/gkt1277

    Article  CAS  PubMed  Google Scholar 

  78. Lèbre S (2009) Inferring dynamic genetic networks with low order independencies. Stat Appl Genet Mol Biol 8:9. https://doi.org/10.2202/1544-6115.1294

    Article  CAS  Google Scholar 

  79. Lèbre S, Becq J, Devaux F et al (2010) Statistical inference of the time-varying structure of gene-regulation networks. BMC Syst Biol 4:130. https://doi.org/10.1186/1752-0509-4-130

    Article  PubMed  PubMed Central  Google Scholar 

  80. Abegaz F, Wit E (2013) Sparse time series chain graphical models for reconstructing genetic networks. Biostatistics 14:586–599. https://doi.org/10.1093/biostatistics/kxt005

    Article  PubMed  Google Scholar 

  81. Li Z, Li P, Krishnan A, Liu J (2011) Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis. Bioinformatics 27:2686–2691. https://doi.org/10.1093/bioinformatics/btr454

    Article  CAS  PubMed  Google Scholar 

  82. Bateman A, Martin MJ, O’Donovan C et al (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212. https://doi.org/10.1093/nar/gku989

    Article  CAS  Google Scholar 

  83. Huang KY, Su MG, Kao HJ et al (2016) dbPTM 2016: 10-year anniversary of a resource for post-translational modification of proteins. Nucleic Acids Res 44:D435–D446. https://doi.org/10.1093/nar/gkv1240

    Article  CAS  PubMed  Google Scholar 

  84. Gnad F, Gunawardena J, Mann M (2011) PHOSIDA 2011: the posttranslational modification database. Nucleic Acids Res 39:D253–D260. https://doi.org/10.1093/nar/gkq1159

    Article  CAS  PubMed  Google Scholar 

  85. Zulawski M, Braginets R, Schulze WX (2013) PhosPhAt goes kinases-searchable protein kinase target information in the plant phosphorylation site database PhosPhAt. Nucleic Acids Res 41:D1176–D1184. https://doi.org/10.1093/nar/gks1081

    Article  CAS  PubMed  Google Scholar 

  86. Cruz ER, Nguyen H, Nguyen T, Wallace IS (2019) Functional analysis tools for post-translational modification: a post-translational modification database for analysis of proteins and metabolic pathways. Plant J 99:1003–1013. https://doi.org/10.1111/tpj.14372

    Article  CAS  PubMed  Google Scholar 

  87. Dinkel H, Chica C, Via A et al (2011) Phospho.ELM: a database of phosphorylation sites—update 2011. Nucleic Acids Res 39:D261–D267. https://doi.org/10.1093/nar/gkq1104

    Article  CAS  PubMed  Google Scholar 

  88. Keshava Prasad TS, Goel R, Kandasamy K et al (2009) Human protein reference database—2009 update. Nucleic Acids Res 37:D767–D772. https://doi.org/10.1093/nar/gkn892

    Article  CAS  PubMed  Google Scholar 

  89. Hornbeck PV, Kornhauser JM, Latham V et al (2019) 15 years of PhosphoSitePlus®: integrating post-translationally modified sites, disease variants and isoforms. Nucleic Acids Res 47:D433–D441. https://doi.org/10.1093/nar/gky1159

    Article  CAS  PubMed  Google Scholar 

  90. Cheng H, Deng W, Wang Y et al (2014) DbPPT: a comprehensive database of protein phosphorylation in plants. Database 2014:bau121. https://doi.org/10.1093/database/bau121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362. https://doi.org/10.1006/jmbi.1999.3310

    Article  CAS  PubMed  Google Scholar 

  92. Iakoucheva LM, Radivojac P, Brown CJ et al (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32:1037–1049. https://doi.org/10.1093/nar/gkh253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ingrell CR, Miller ML, Jensen ON, Blom N (2007) NetPhosYeast: prediction of protein phosphorylation sites in yeast. Bioinformatics 23:895–897. https://doi.org/10.1093/bioinformatics/btm020

    Article  CAS  PubMed  Google Scholar 

  94. Que S, Li K, Chen M et al (2012) PhosphoRice: a meta-predictor of rice-specific phosphorylation sites. Plant Methods 8. https://doi.org/10.1186/1746-4811-8-5

  95. Palmeri A, Gherardini PF, Tsigankov P et al (2011) PhosTryp: a phosphorylation site predictor specific for parasitic protozoa of the family trypanosomatidae. BMC Genomics 12. https://doi.org/10.1186/1471-2164-12-614

  96. Wong YH, Lee TY, Liang HK et al (2007) KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res 35:W588–W594. https://doi.org/10.1093/nar/gkm322

    Article  PubMed  PubMed Central  Google Scholar 

  97. Suo SB, Qiu JD, Shi SP et al (2014) PSEA: kinase-specific prediction and analysis of human phosphorylation substrates. Sci Rep 4:4524. https://doi.org/10.1038/srep04524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang C, Xu H, Lin S et al (2020) GPS 5.0: an update on the prediction of kinase-specific phosphorylation sites in proteins. Genomics Proteomics Bioinformatics 18(1):72–80. https://doi.org/10.1016/j.gpb.2020.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li T, Li F, Zhang X (2008) Prediction of kinase-specific phosphorylation sites with sequence features by a log-odds ratio approach. Proteins 70:404–414. https://doi.org/10.1002/prot.21563

    Article  CAS  PubMed  Google Scholar 

  100. Obenauer JC, Cantley LC, Yaffe MB (2003) Scansite 2.0: proteome-wide prediction of cell signalling interactions using short sequence motifs. Nucleic Acids Res 31:3635–3641. https://doi.org/10.1093/nar/gkg584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ellis JJ, Kobe B (2011) Predicting protein kinase specificity: predikin update and performance in the DREAM4 challenge. PLoS One 6:e21169. https://doi.org/10.1371/journal.pone.0021169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jung I, Matsuyama A, Yoshida M, Kim D (2010) PostMod: sequence based prediction of kinase-specific phosphorylation sites with indirect relationship. BMC Bioinformatics 11:S10. https://doi.org/10.1186/1471-2105-11-S1-S10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Safaei J, Maňuch J, Gupta A et al (2011) Prediction of 492 human protein kinase substrate specificities. Proteome Sci 9:S6. https://doi.org/10.1186/1477-5956-9-S1-S6

    Article  PubMed  PubMed Central  Google Scholar 

  104. Miller ML, Blom N (2009) Kinase-specific prediction of protein phosphorylation sites. Methods Mol Biol 527:299–310. https://doi.org/10.1007/978-1-60327-834-8_22

    Article  CAS  PubMed  Google Scholar 

  105. Gao J, Thelen JJ, Dunker AK, Xu D (2010) Musite, a tool for global prediction of general and kinase-specific phosphorylation sites. Mol Cell Proteomics 9:2586–2600. https://doi.org/10.1074/mcp.M110.001388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Qin GM, Li RY, Zhao XM (2017) PhosD: inferring kinase-substrate interactions based on protein domains. Bioinformatics 33:1197–1204. https://doi.org/10.1093/bioinformatics/btw792

    Article  CAS  PubMed  Google Scholar 

  107. Fenoy E, Izarzugaza JMG, Jurtz V et al (2019) A generic deep convolutional neural network framework for prediction of receptor-ligand interactions-NetPhosPan: application to kinase phosphorylation prediction. Bioinformatics 35:1098–1107. https://doi.org/10.1093/bioinformatics/bty715

    Article  CAS  PubMed  Google Scholar 

  108. Xue Y, Li A, Wang L et al (2006) PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory. BMC Bioinformatics 7:163. https://doi.org/10.1186/1471-2105-7-163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyou Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, M., Duan, G. (2021). Computational Phosphorylation Network Reconstruction: An Update on Methods and Resources. In: Wu, X.N. (eds) Plant Phosphoproteomics. Methods in Molecular Biology, vol 2358. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1625-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1625-3_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1624-6

  • Online ISBN: 978-1-0716-1625-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics