Skip to main content

Rule-Based Modelling of Cellular Signalling

  • Conference paper
CONCUR 2007 – Concurrency Theory (CONCUR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4703))

Included in the following conference series:

Abstract

Modelling is becoming a necessity in studying biological signalling pathways, because the combinatorial complexity of such systems rapidly overwhelms intuitive and qualitative forms of reasoning. Yet, this same combinatorial explosion makes the traditional modelling paradigm based on systems of differential equations impractical. In contrast, agent-based or concurrent languages, such as κ [1,2,3] or the closely related BioNetGen language [4,5,6,7,8,9,10], describe biological interactions in terms of rules, thereby avoiding the combinatorial explosion besetting differential equations. Rules are expressed in an intuitive graphical form that transparently represents biological knowledge. In this way, rules become a natural unit of model building, modification, and discussion. We illustrate this with a sizeable example obtained from refactoring two models of EGF receptor signalling that are based on differential equations [11,12]. An exciting aspect of the agent-based approach is that it naturally lends itself to the identification and analysis of the causal structures that deeply shape the dynamical, and perhaps even evolutionary, characteristics of complex distributed biological systems. In particular, one can adapt the notions of causality and conflict, familiar from concurrency theory, to κ, our representation language of choice. Using the EGF receptor model as an example, we show how causality enables the formalization of the colloquial concept of pathway and, perhaps more surprisingly, how conflict can be used to dissect the signalling dynamics to obtain a qualitative handle on the range of system behaviours. By taming the combinatorial explosion, and exposing the causal structures and key kinetic junctures in a model, agent- and rule-based representations hold promise for making modelling more powerful, more perspicuous, and of appeal to a wider audience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Curien, P.L., Danos, V., Krivine, J., Zhang, M.: Computational self-assembly (submitted) (February 2007)

    Google Scholar 

  2. Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325(1), 69–110 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Danos, V., Laneve, C.: Core formal molecular biology. In: Degano, P. (ed.) ESOP 2003 and ETAPS 2003. LNCS, vol. 2618, pp. 302–318. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Faeder, J., Blinov, M.B.G., Hlavacek, W.: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Complexity 10, 22–41 (2005)

    Article  Google Scholar 

  5. Blinov, M., Yang, J., Faeder, J., Hlavacek, W.: Graph theory for rule-based modeling of biochemical networks. In: Proc. BioCONCUR 2005 (2006)

    Google Scholar 

  6. Faeder, J., Blinov, M., Hlavacek, W.: Graphical rule-based representation of signal-transduction networks. In: Proc. ACM Symp. Appl. Computing, pp. 133–140. ACM Press, New York (2005)

    Google Scholar 

  7. Faeder, J.R., Blinov, M.L., Goldstein, B., Hlavacek, W.S.: Combinatorial complexity and dynamical restriction of network flows in signal transduction. Systems Biology 2(1), 5–15 (2005)

    Article  Google Scholar 

  8. Blinov, M.L., Yang, J., Faeder, J.R., Hlavacek, W.S.: Depicting signaling cascades. Nat. Biotechnol. 24(2), 1–2 (2006)

    Article  Google Scholar 

  9. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. BioSystems 83, 136–151 (2006)

    Article  Google Scholar 

  10. Hlavacek, W., Faeder, J., Blinov, M., Posner, R., Hucka, M., Fontana, W.: Rules for Modeling Signal-Transduction Systems. Science’s STKE 2006. 344 (2006)

    Google Scholar 

  11. Brightman, F., Fell, D.: Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells. FEBS Lett. 482(3), 169–174 (2000)

    Article  Google Scholar 

  12. Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., Müller, G.: Computational modeling of the dynamics of the map kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnology 20, 370–375 (2002)

    Article  Google Scholar 

  13. Orton, R.J., Sturm, O.E., Vyshemirsky, V., Calder, M., Gilbert, D.R., Kolch, W.: Computational modelling of the receptor tyrosine kinase activated MAPK pathway. Biochemical Journal 392(2), 249–261 (2005)

    Article  Google Scholar 

  14. Huang, C., Ferrell, J.: Ultrasensitivity in the mitogen-activated protein kinase cascade (1996)

    Google Scholar 

  15. Kholodenko, B., Demin, O., Moehren, G., Hoek, J.: Quantification of Short Term Signaling by the Epidermal Growth Factor Receptor. Journal of Biological Chemistry 274(42), 30169–30181 (1999)

    Article  Google Scholar 

  16. Kholodenko, B.: Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades (2000)

    Google Scholar 

  17. Pawson, T., Nash, P.: Assembly of Cell Regulatory Systems Through Protein Interaction Domains. Science 300(5618), 445–452 (2003)

    Article  Google Scholar 

  18. Blinov, M., Faeder, J., Hlavacek, W.: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20, 3289–3292 (2004)

    Article  Google Scholar 

  19. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Pathway logic: Symbolic analysis of biological signaling. In: Proceedings of the Pacific Symposium on Biocomputing. pp. 400–412 (January 2002)

    Google Scholar 

  20. Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  21. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the π-calculus process algebra. In: Altman, R.B., Dunker, A.K., Hunter, L., Klein, T.E. (eds.) Pacific Symposium on Biocomputing, vol. 6, pp. 459–470. World Scientific Press, Singapore (2001)

    Google Scholar 

  22. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters (2001)

    Google Scholar 

  23. Regev, A., Shapiro, E.: Cells as computation. Nature 419 (September 2002)

    Google Scholar 

  24. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients: An abstraction for biological compartments. Theoretical Computer Science (2003) (to appear)

    Google Scholar 

  25. Cardelli, L.: Brane calculi. In: Proceedings of BIO-CONCUR’03, Marseille, France. Electronic Notes in Theoretical Computer Science, Elsevier, Amsterdam (2003) (to appear)

    Google Scholar 

  26. Priami, C., Quaglia, P.: Beta binders for biological interactions. Proceedings of CMSB 3082, 20–33 (2004)

    MathSciNet  Google Scholar 

  27. Danos, V., Krivine, J.: Formal molecular biology done in CCS (to appear). In: Proceedings of BIO-CONCUR 2003, Marseille, France. Electronic Notes in Theoretical Computer Science, Elsevier, Amsterdam (2003)

    Google Scholar 

  28. Nielsen, M., Winskel, G.: Models For Concurrency. In: Handbook of Logic and the Foundations of Computer Science, vol. 4, pp. 1–148. Oxford University Press, Oxford (1995)

    Google Scholar 

  29. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains. Theoretical Computer Science 13, 85–108 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  30. Baldan, P., Corradini, A., Montanari, U.: Unfolding and event structure semantics for graph grammars. In: Thomas, W. (ed.) ETAPS 1999 and FOSSACS 1999. LNCS, vol. 1578, pp. 367–386. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  31. Baldi, C., Degano, P., Priami, C.: Causal pi-calculus for biochemical modeling. In: Proceedings of the AI*IA Workshop on BioInformatics 2002, pp. 69–72 (2002)

    Google Scholar 

  32. Curti, M., Degano, P., Priami, C., Baldari, C.: Modelling biochemical pathways through enhanced–calculus. Theoretical Computer Science 325(1), 111–140 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Goldbeter, A., Koshland, D.: An Amplified Sensitivity Arising from Covalent Modification in Biological Systems. Proceedings of the National Academy of Sciences 78(11), 6840–6844 (1981)

    Article  MathSciNet  Google Scholar 

  34. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  35. Oda, K., Matsuoka, Y., Funahashi, A., Kitano, H.: A comprehensive pathway map of epidermal growth factor receptor signaling. Molecular Systems Biology 1 (May 2005)

    Google Scholar 

  36. Weinberg, R.A.: The Biology of Cancer. Garland Science (June 2006)

    Google Scholar 

  37. Hynes, N., Lane, H.: ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Reviews Cancer 5(5), 341–354 (2005)

    Article  Google Scholar 

  38. Milner, R.: Bigraphical reactive systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 16–35. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  39. Winskel, G.: An introduction to event structures. In: REX Workshop 1988. LNCS, Springer, Heidelberg (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luís Caires Vasco T. Vasconcelos

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J. (2007). Rule-Based Modelling of Cellular Signalling. In: Caires, L., Vasconcelos, V.T. (eds) CONCUR 2007 – Concurrency Theory. CONCUR 2007. Lecture Notes in Computer Science, vol 4703. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74407-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74407-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74406-1

  • Online ISBN: 978-3-540-74407-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics