Skip to main content

Kinase-Specific Prediction of Protein Phosphorylation Sites

  • Protocol
Phospho-Proteomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 527))

Summary

As extensive mass spectrometry-based mapping of the phosphoproteome progresses, computational anal ysis of phosphorylation-dependent signaling becomes increasingly important. The linear sequence motifs that surround phosphorylated residues have successfully been used to characterize kinase–substrate spe cificity. Here, we briefly describe the available resources for predicting kinase-specific phosphorylation from sequence properties. We address the strengths and weaknesses of these resources, which are based on methods ranging from simple consensus patterns to more advanced machine-learning algorithms. Furthermore, a protocol for the use of the artificial neural network based predictors, NetPhos and NetPhosK, is provided. Finally, we point to possible developments with the intention of providing the community with improved and additional phosphorylation predictors for large-scale modeling of cellular signaling networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manning G, Whyte D, Martinez R, Hunter T, Sudarsanam S. (2002) The protein kinase complement of the human genome. Science 298, 1912–34.

    Article  PubMed  CAS  Google Scholar 

  2. Pawson T. (2002) Regulation and targets of receptor tyrosine kinases. Eur J Cancer 38, S3–10.

    Article  PubMed  Google Scholar 

  3. Seet B, Dikic I, Zhou M, Pawson T. (2006) Reading protein modifications with inter action domains. Nat Rev Mol Cell Biol 7, 473–83.

    Article  PubMed  CAS  Google Scholar 

  4. Bork P, Koonin E. (1996) Protein sequence motifs. Curr Opin Struct Biol 6, 366–76.

    Article  PubMed  CAS  Google Scholar 

  5. Songyang Z, Blechner S, Hoagland N, Hoek-stra M, Piwnica-Worms H, Cantley L. (1994) Use of an oriented peptide library to deter mine the optimal substrates of protein kinases. Curr Biol 4, 973–82.

    Article  PubMed  CAS  Google Scholar 

  6. Kreegipuu A, Blom N, Brunak S, Jar v J. (1998) Statistical analysis of protein kinase specificity determinants. FEBS Lett 430, 45–50.

    Article  PubMed  CAS  Google Scholar 

  7. Beausoleil S, Jedrychowski M, Schwartz D, et al. (2004) Large-scale characterization of Hela cell nuclear phosphoproteins. Proc Natl Acad Sci USA 101, 12130–5.

    Article  PubMed  CAS  Google Scholar 

  8. Olsen J, Blagoev B, Gnad F, et al. (2006) Global, in vivo, and site-specific phosphoryla-tion dynamics in signaling networks. Cell 127, 635–48.

    Article  PubMed  CAS  Google Scholar 

  9. Linding R, Jensen L, Ostheimer G, et al. (2007) Systematic discovery of in vivo phos-phorylation networks. Cell 129, 1415–26.

    Article  PubMed  CAS  Google Scholar 

  10. Hjerrild M, Stensballe A, Rasmussen T, et al. (2004) Identification of phosphorylation sites in protein kinase a substrates using artificial neural networks and mass spectrometry. J Pro-teome Res 3, 426–33.

    CAS  Google Scholar 

  11. Manning B, Tee A, Logsdon M, Blenis J, Can-tley L. (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuber in as a target of the phosphoi-nositide 3-kinase/Akt pathway. Mol Cell 10, 151–62.

    Article  PubMed  CAS  Google Scholar 

  12. Miller M, Hanke S, Hinsby A, et al. (2008) Motif decomposition of the phosphotyrosine proteome reveals a new N-terminal binding motif for ship2. Mol Cell Proteomics 7, 181–92.

    PubMed  CAS  Google Scholar 

  13. Puntervoll P, Linding R, Gemund C, et al. (2003) Elm server: a new resource for inves tigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 31, 3625–30.

    Article  PubMed  CAS  Google Scholar 

  14. Amanchy R, Periaswamy B, Mathivanan S, Reddy R, Tattikota S, Pandey A. (2007) A curated compendium of phosphorylation motifs. Nat Biotechnol 25, 285–6.

    Article  PubMed  CAS  Google Scholar 

  15. Mulder N, Apweiler R, Attwood T, et al. (2003) The interpro database, 2003 brings increased coverage and new features. Nucleic Acids Res 31, 315–8.

    Article  PubMed  CAS  Google Scholar 

  16. Peri S, Navarro J, Amanchy R, et al. (2003) Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 13, 2363–71.

    Article  PubMed  CAS  Google Scholar 

  17. Yaffe M, Leparc G, Lai J, Obata T, Volinia S, Cantley L. (2001) A motif-based profile scan ning approach for genome-wide prediction of signaling pathways. Nat Biotechnol 19, 348–53.

    Article  PubMed  CAS  Google Scholar 

  18. Obenauer J, Cantley L, Yaffe M. (2003) Scan-site 2.0: proteome-wide prediction of cell signalling interactions using short sequence motifs. Nucleic Acids Res 31, 3635–41.

    Article  PubMed  CAS  Google Scholar 

  19. Zhou F, Xue Y, Chen G, Yao X. (2004) GPS: a novel group-based phosphorylation predict ing and scoring method. Biochem Biophys Res Commun 325, 1443–8.

    Article  PubMed  CAS  Google Scholar 

  20. Xue Y, Zhou F, Zhu M, Ahmed K, Chen G, Yao X. (2005) GPS: a comprehensive www server for phosphorylation sites prediction. Nucleic Acids Res 33, W184–7.

    Article  PubMed  CAS  Google Scholar 

  21. Huang H, Lee T, Tzeng S, Horng J. (2005) KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites. Nucleic Acids Res 33, W226–9.

    Article  PubMed  CAS  Google Scholar 

  22. Blom N, Sicheritz-Ponten T, Gupta R, Gam-meltoft S, Brunak S. (2004) Prediction of posttranslational glycosylation and phos-phorylation of proteins from the amino acid sequence. Proteomics 4, 1633–49.

    Article  PubMed  CAS  Google Scholar 

  23. Xue Y, Li A, Wang L, Feng H, Yao X. (2006) PPSP: prediction of PK-specific phosphoryla-tion site with Bayesian decision theory. BMC Bioinformatics 7, 163.

    Article  PubMed  Google Scholar 

  24. Kim J, Lee J, Oh B, Kimm K, Koh I. (2004) Prediction of phosphorylation sites using SVMs. Bioinformatics 20, 3179–84.

    Article  PubMed  CAS  Google Scholar 

  25. Blom N, Gammeltoft S, Brunak S. (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294, 1351–62.

    Article  PubMed  CAS  Google Scholar 

  26. Diella F, Cameron S, Gemund C, et al. (2004) Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins. BMC Bioinformatics 5, 79.

    Article  PubMed  Google Scholar 

  27. Wu C. (1997) Artificial neural networks for molecular sequence analysis. Comput Chem 21, 237–56.

    Article  PubMed  CAS  Google Scholar 

  28. Brinkworth R, Breinl R, Kobe B. (2003) Structural basis and prediction of substrate specificity in protein serine/threonine kinases. Proc Natl Acad Sci USA 100, 74–9.

    Article  PubMed  CAS  Google Scholar 

  29. Manke I, Nguyen A, Lim D, Stewart M, Elia A, Yaffe M. (2005) MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol Cell 17, 37–48.

    Article  PubMed  CAS  Google Scholar 

  30. Ingrell C, Miller M, Jensen O, Blom N. (2007) NetPhosYeast: prediction of protein phosphorylation sites in yeast. Bioinformatics 23, 895–7.

    Article  PubMed  CAS  Google Scholar 

  31. Araki R, Fukumura R, Fujimori A, et al. (1999) Enhanced phosphorylation of p53 serine 18 following DNA damage in DNA-dependent protein kinase catalytic subunit-deficient cells. Cancer Res 59, 3543–6.

    PubMed  CAS  Google Scholar 

  32. Saito S, Goodarzi A, Higashimoto Y, et al. (2002) ATM mediates phosphoryla-tion at multiple p53 sites, including ser(46), in response to ionizing radiation. J Biol Chem 277, 12491–4.

    Article  PubMed  CAS  Google Scholar 

  33. Dumaz N, Milne D, Meek D. (1999) Pro tein kinase CK1 is a p53-threonine 18 kinase which requires prior phosphorylation of serine 15. FEBS Lett 463, 312–6.

    Article  PubMed  CAS  Google Scholar 

  34. Kreegipuu A, Blom N, Brunak S. (1999) Phos-phoBase, a database of phosphorylation sites: release 2.0. Nucleic Acids Res 27, 237–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Rune Linding, Lars Juhl Jensen, Majbritt Hjerrild, Steen Gammeltoft, Thomas Sicheritz-Ponten and Søren Brunak.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Miller, M.L., Blom, N. (2009). Kinase-Specific Prediction of Protein Phosphorylation Sites. In: Graauw, M.d. (eds) Phospho-Proteomics. Methods in Molecular Biology™, vol 527. Humana Press. https://doi.org/10.1007/978-1-60327-834-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-834-8_22

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-833-1

  • Online ISBN: 978-1-60327-834-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics