Skip to main content

Application of a Mutant Cell Library to Determine the Structure–Function Relationship of Heparan Sulfate in Facilitating FGF2-FGFR1 Signaling

  • Protocol
  • First Online:
Glycosaminoglycans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2303))

  • 1803 Accesses

Abstract

Heparan sulfate (HS) is a linear polysaccharide with complex structures and modulates a wide range of biological functions. Elucidating the structure–function relationship of HS has been challenging. Recently, we generated a HS mutant mouse lung endothelial cell library by systematic deletion of HS genes expressed in the cell individually or in their combination. Here, we describe the experimental procedure using the mutant cell library to determine the structure–function relationship of HS in the regulation of FGF2-FGFR1 signaling at the levels of cell surface FGF2 binding and the downstream intracellular signaling activation. Our results demonstrated that strictly defined fine structure is required for HS to act as a co-receptor for FGF2-FGFR1 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446(7139):1030–1037

    Article  CAS  Google Scholar 

  2. Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471

    Article  CAS  Google Scholar 

  3. Kjellen L (2003) Glucosaminyl N-deacetylase/N-sulphotransferases in heparan sulphate biosynthesis and biology. Biochem Soc Trans 31(2):340–342

    Article  CAS  Google Scholar 

  4. Esko JD, Lindahl U (2001) Molecular diversity of heparan sulfate. J Clin Invest 108(2):169–173

    Article  CAS  Google Scholar 

  5. Zhao J, Zhu Y, Song X et al (2019) 3-O-sulfation of heparan sulfate enhances tau interaction and cellular uptake. Angew Chem Int Ed 59:1818–1827

    Article  Google Scholar 

  6. Stringer SE (2006) The role of heparan sulphate proteoglycans in angiogenesis. Biochem Soc Trans 34(Pt 3):451–453

    Article  CAS  Google Scholar 

  7. Presta M, Dell'Era P, Mitola S et al (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16(2):159–178

    Article  CAS  Google Scholar 

  8. Iozzo RV, San Antonio JD (2001) Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 108(3):349–355

    Article  CAS  Google Scholar 

  9. Rai S, Alsaidan OA, Yang H et al (2020) Heparan sulfate inhibits transforming growth factor beta signaling and functions in cis and in trans to regulate prostate stem/progenitor cell activities. Glycobiology 30(6):381–395. https://doi.org/10.1093/glycob/cwz103

    Article  CAS  PubMed  Google Scholar 

  10. Bernfield M, Gotte M, Park PW et al (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777

    Article  CAS  Google Scholar 

  11. Wang L, Brown JR, Varki A, Esko JD (2002) Heparin's anti-inflammatory effects require glucosamine 6-O-sulfation and are mediated by blockade of L- and P-selectins. J Clin Invest 110(1):127–136

    Article  CAS  Google Scholar 

  12. Xu D, Esko JD (2014) Demystifying heparan sulfate-protein interactions. Annu Rev Biochem 83:129–157

    Article  CAS  Google Scholar 

  13. Bai X, Wei G, Sinha A, Esko JD (1999) Chinese hamster ovary cell mutants defective in glycosaminoglycan assembly and glucuronosyltransferase I. J Biol Chem 274(19):13017–13024

    Article  CAS  Google Scholar 

  14. Esko JD, Rostand KS, Weinke JL (1988) Tumor formation dependent on proteoglycan biosynthesis. Science 241(4869):1092–1096

    Article  CAS  Google Scholar 

  15. Esko JD, Stewart TE, Taylor WH (1985) Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc Natl Acad Sci U S A 82(10):3197–3201

    Article  CAS  Google Scholar 

  16. Wijelath E, Namekata M, Murray J et al (2010) Multiple mechanisms for exogenous heparin modulation of vascular endothelial growth factor activity. J Cell Biochem 111(2):461–468

    Article  CAS  Google Scholar 

  17. Zhang B, Xiao W, Qiu H et al (2014) Heparan sulfate deficiency disrupts developmental angiogenesis and causes congenital diaphragmatic hernia. J Clin Invest 124(1):209–221

    Article  CAS  Google Scholar 

  18. Qiu H, Xiao W, Yue J, Wang L (2015) Heparan sulfate modulates Slit3-induced endothelial cell migration. Methods Mol Biol 1229:549–555

    Article  CAS  Google Scholar 

  19. Zhang B, Dietrich UM, Geng JG et al (2009) Repulsive axon guidance molecule Slit3 is a novel angiogenic factor. Blood 114(19):4300–4309

    Article  CAS  Google Scholar 

  20. Qiu H, Shi S, Yue J et al (2018) A mutant-cell library for systematic analysis of heparan sulfate structure-function relationships. Nat Methods 15(11):889–899

    Article  CAS  Google Scholar 

  21. Qiu H, Jiang JL, Liu M et al (2013) Quantitative phosphoproteomics analysis reveals broad regulatory role of heparan sulfate on endothelial signaling. Mol Cell Proteomics 12(8):2160–2173

    Article  CAS  Google Scholar 

  22. Schlessinger J, Plotnikov AN, Ibrahimi OA et al (2000) Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 6(3):743–750

    Article  CAS  Google Scholar 

  23. Jastrebova N, Vanwildemeersch M, Rapraeger AC et al (2006) Heparan sulfate-related oligosaccharides in ternary complex formation with fibroblast growth factors 1 and 2 and their receptors. J Biol Chem 281(37):26884–26892

    Article  CAS  Google Scholar 

  24. Kreuger J, Jemth P, Sanders-Lindberg E et al (2005) Fibroblast growth factors share binding sites in heparan sulphate. Biochem J 389:145–150

    Article  CAS  Google Scholar 

  25. Xie M, Li JP (2019) Heparan sulfate proteoglycan – a common receptor for diverse cytokines. Cell Signal 54:115–121

    Article  CAS  Google Scholar 

  26. Nakato H, Kimata K (2002) Heparan sulfate fine structure and specificity of proteoglycan functions. Biochim Biophys Acta 1573(3):312–318

    Article  CAS  Google Scholar 

  27. Habuchi H, Habuchi O, Kimata K (2004) Sulfation pattern in glycosaminoglycan: does it have a code? Glycoconj J 21(1–2):47–52

    Article  CAS  Google Scholar 

  28. Turnbull JE, Fernig DG, Ke Y et al (1992) Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. J Biol Chem 267(15):10337–10341

    Article  CAS  Google Scholar 

  29. Maccarana M, Casu B, Lindahl U (1993) Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor. J Biol Chem 268(32):23898–23905

    Article  CAS  Google Scholar 

  30. Ashikari-Hada S, Habuchi H, Kariya Y et al (2004) Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J Biol Chem 279(13):12346–12354

    Article  CAS  Google Scholar 

  31. Guimond SE, Turnbull JE (1999) Fibroblast growth factor receptor signalling is dictated by specific heparan sulphate saccharides. Curr Biol 9(22):1343–1346

    Article  CAS  Google Scholar 

  32. Kamimura K, Koyama T, Habuchi H et al (2006) Specific and flexible roles of heparan sulfate modifications in Drosophila FGF signaling. J Cell Biol 174(6):773–778

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by NIH R21HL131553, P41GM103390, 5R01HL093339, U01CA225784, and R56 AG062344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianchun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Faulkner, J., Song, X., Wang, L. (2022). Application of a Mutant Cell Library to Determine the Structure–Function Relationship of Heparan Sulfate in Facilitating FGF2-FGFR1 Signaling. In: Balagurunathan, K., Nakato, H., Desai, U., Saijoh, Y. (eds) Glycosaminoglycans. Methods in Molecular Biology, vol 2303. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1398-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1398-6_48

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1397-9

  • Online ISBN: 978-1-0716-1398-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics