Skip to main content

The Good and Bad Sides of Heparanase-1 and Heparanase-2

  • Chapter
  • First Online:
Heparanase

Abstract

In this chapter, we will emphasize the importance of heparan sulfate proteoglycans (HSPG) in controlling various physiological and pathological molecular mechanisms and discuss how the heparanase enzyme can modulate the effects triggered by HSPG. Additionally, we will also navigate about the existing knowledge of the possible role of heparanase-2 in biological events. Heparan sulfate is widely distributed and evolutionarily conserved, evidencing its vital importance in cell development and functions such as cell proliferation, migration, adhesion, differentiation, and angiogenesis. During remodeling of the extracellular matrix, the breakdown of heparan sulfate by heparanase results in the release of molecules containing anchored glycosaminoglycan chains of great interest in heparanase-mediated cell signaling pathways in various physiological states, tumor development, inflammation, and other diseases. Taken together, it appears that heparanase plays a key role in the maintenance of the pathology of cancer and inflammatory diseases and is a potential target for anti-cancer therapies. Therefore, heparanase inhibitors are currently being examined in clinical trials as novel cancer therapeutics. Heparanase-2 has no enzymatic activity, displays higher affinity for heparan sulfate and the coding region alignment shows 40% identity with the heparanase gene. Heparanase-2 plays an important role in embryogenic development however its mode of action and biological function remain to be elucidated. Heparanase-2 functions as an inhibitor of the heparanase-1 enzyme and also inhibits neovascularization mediated by VEGF. The HPSE2 gene is repressed by the Polycomb complex, together suggesting a role as a tumor suppressor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gattazzo, F., Urciuolo, A., & Bonaldo, P. (2014, August). Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochimica et Biophysica Acta, 1840(8), 2506–2519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pickup, M. W., Mouw, J. K., & Weaver, V. M. (2014, December). The extracellular matrix modulates the hallmarks of cancer. EMBO Reports, 15(12), 1243–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bonnans, C., Chou, J., & Werb, Z. (2014, December). Remodelling the extracellular matrix in development and disease. Nature Reviews. Molecular Cell Biology, 15(12), 786–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hynes, R. O., & Naba, A. (2012, January). Overview of the matrisome--an inventory of extracellular matrix constituents and functions. Cold Spring Harbor Perspectives in Biology, 4(1), a004903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Fan, D., Creemers, E. E., & Kassiri, Z. (2014, February). Matrix as an interstitial transport system. Circulation Research, 114(5), 889–902.

    Article  CAS  PubMed  Google Scholar 

  6. Lu, P., Takai, K., Weaver, V. M., & Werb, Z. (2011, December). Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Perspectives in Biology, 3(12).

    Google Scholar 

  7. Adams, J. C., & Watt, F. M. (1993, April). Regulation of development and differentiation by the extracellular matrix. Development, 117(4), 1183–1198.

    CAS  PubMed  Google Scholar 

  8. Grinnell, F. (1992, January). Wound repair, keratinocyte activation and integrin modulation. Journal of Cell Science, 101(Pt 1), 1–5.

    CAS  PubMed  Google Scholar 

  9. Chiquet-Ehrismann, R. (1993, October). Tenascin and other adhesion-modulating proteins in cancer. Seminars in Cancer Biology, 4(5), 301–310.

    CAS  PubMed  Google Scholar 

  10. Ekblom, M., Klein, G., Mugrauer, G., Fecker, L., Deutzmann, R., Timpl, R., et al. (1990, January). Transient and locally restricted expression of laminin a chain mRNA by developing epithelial cells during kidney organogenesis. Cell, 60(2), 337–346.

    Article  CAS  PubMed  Google Scholar 

  11. Prieto, J. J., Rubio, M. E., & Merchan, J. A. (1990, May). Localization of anionic sulfate groups in the tectorial membrane. Hearing Research, 45(3), 283–293.

    Article  CAS  PubMed  Google Scholar 

  12. Bristow, J., Tee, M. K., Gitelman, S. E., Mellon, S. H., & Miller, W. L. (1993, July). Tenascin-X: A novel extracellular matrix protein encoded by the human XB gene overlapping P450c21B. The Journal of Cell Biology, 122(1), 265–278.

    Article  CAS  PubMed  Google Scholar 

  13. Hynes, R. O. (2007, July). Cell-matrix adhesion in vascular development. Journal of Thrombosis and Haemostasis, 5(Suppl 1), 32–40.

    Article  CAS  PubMed  Google Scholar 

  14. Humphries, J. D., Chastney, M. R., Askari, J. A., & Humphries, M. J. (2019, February). Signal transduction via integrin adhesion complexes. Current Opinion in Cell Biology, 56, 14–21.

    Article  CAS  PubMed  Google Scholar 

  15. Larsen, M., Artym, V. V., Green, J. A., & Yamada, K. M. (2006, October). The matrix reorganized: Extracellular matrix remodeling and integrin signaling. Current Opinion in Cell Biology, 18(5), 463–471.

    Article  CAS  PubMed  Google Scholar 

  16. Burridge, K., & Chrzanowska-Wodnicka, M. (1996). Focal adhesions, contractility, and signaling. Annual Review of Cell and Developmental Biology, 12, 463–518.

    Article  CAS  PubMed  Google Scholar 

  17. Giancotti, F. G., & Ruoslahti, E. (1999, August). Integrin signaling. Science, 285(5430), 1028–1032.

    Article  CAS  PubMed  Google Scholar 

  18. Nader, H. B., Dietrich, C. P., Buonassisi, V., & Colburn, P. (1987, June). Heparin sequences in the heparan sulfate chains of an endothelial cell proteoglycan. Proceedings of the National Academy of Sciences of the United States of America, 84(11), 3565–3569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dietrich, C. P., Tersariol, I. L., Toma, L., Moraes, C. T., Porcionatto, M. A., Oliveira, F. W., et al. (1998, May). Structure of heparan sulfate: Identification of variable and constant oligosaccharide domains in eight heparan sulfates of different origins. Cellular and Molecular Biology (Noisy-le-Grand, France), 44(3), 417–429.

    CAS  Google Scholar 

  20. Sampaio, L. O., & Nader, H. B. (2006). Emergence and structural characteristics of chondroitin sulfates in the animal kingdom. Advances in Pharmacology, 53, 233–251.

    Article  CAS  PubMed  Google Scholar 

  21. Casu, B., Choay, J., Ferro, D. R., Gatti, G., Jacquinet, J. C., Petitou, M., et al. (1986, July 17–23). Controversial glycosaminoglycan conformations. Nature, 322(6076), 215–216.

    Article  CAS  PubMed  Google Scholar 

  22. Sampaio, L. O., Tersariol, I. L. S., Lopes, C. C., Bouças, R. I., FbD, N., HAO, R., et al. (2006). Heparins and heparan sulfates. Structure, distribution and protein interactions. Kerala: Transworld Research Network.

    Google Scholar 

  23. Bernfield, M., Gotte, M., Park, P. W., Reizes, O., Fitzgerald, M. L., Lincecum, J., et al. (1999). Functions of cell surface heparan sulfate proteoglycans. Annual Review of Biochemistry, 68, 729–777.

    Article  CAS  PubMed  Google Scholar 

  24. Iozzo, R. V. (2001). Heparan sulfate proteoglycans: Intricate molecules with intriguing functions. The Journal of Clinical Investigation, 108(2), 165–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Woods, A. (2001, April). Syndecans: Transmembrane modulators of adhesion and matrix assembly. The Journal of Clinical Investigation, 107(8), 935–941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dreyfuss, J. L., Regatieri, C. V., Jarrouge, T. R., Cavalheiro, R. P., Sampaio, L. O., & Nader, H. B. (2009, September). Heparan sulfate proteoglycans: Structure, protein interactions and cell signaling. Anais da Academia Brasileira de Ciências, 81(3), 409–429.

    Article  CAS  PubMed  Google Scholar 

  27. Sarrazin, S., Lamanna, W. C., & Esko, J. D. (2011, July). Heparan sulfate proteoglycans. Cold Spring Harbor Perspectives in Biology, 3(7).

    Google Scholar 

  28. Whiteford, J. R., & Couchman, J. R. (2006, October). A conserved NXIP motif is required for cell adhesion properties of the syndecan-4 ectodomain. The Journal of Biological Chemistry, 281(43), 32156–32163.

    Article  CAS  PubMed  Google Scholar 

  29. De Rossi, G., & Whiteford, J. R. (2013, July–August). Novel insight into the biological functions of syndecan ectodomain core proteins. BioFactors, 39(4), 374–382.

    Article  PubMed  CAS  Google Scholar 

  30. Cavalheiro, R. P., Lima, M. A., Jarrouge-Bouças, T. R., Viana, G. M., Lopes, C. C., Coulson-Thomas, V. J., et al. (2017). Coupling of vinculin to F-actin demands Syndecan-4 proteoglycan. Matrix Biology, 11(63), 23–37.

    Article  CAS  Google Scholar 

  31. Crabbe, T., Ioannou, C., & Docherty, A. J. (1993, December). Human progelatinase a can be activated by autolysis at a rate that is concentration-dependent and enhanced by heparin bound to the C-terminal domain. European Journal of Biochemistry, 218(2), 431–438.

    Article  CAS  PubMed  Google Scholar 

  32. Crabbe, T., O’Connell, J. P., Smith, B. J., & Docherty, A. J. (1994, December). Reciprocated matrix metalloproteinase activation: A process performed by interstitial collagenase and progelatinase a. Biochemistry, 33(48), 14419–14425.

    Article  CAS  PubMed  Google Scholar 

  33. Iida, J., Wilhelmson, K. L., Ng, J., Lee, P., Morrison, C., Tam, E., et al. (2007, May). Cell surface chondroitin sulfate glycosaminoglycan in melanoma: Role in the activation of pro-MMP-2 (pro-gelatinase a). The Biochemical Journal, 403(3), 553–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao, G., Plaas, A., Thompson, V. P., Jin, S., Zuo, F., & Sandy, J. D. (2004, March). ADAMTS4 (aggrecanase-1) activation on the cell surface involves C-terminal cleavage by glycosylphosphatidyl inositol-anchored membrane type 4-matrix metalloproteinase and binding of the activated proteinase to chondroitin sulfate and heparan sulfate on syndecan-1. The Journal of Biological Chemistry, 279(11), 10042–10051.

    Article  CAS  PubMed  Google Scholar 

  35. Buck, M. R., Karustis, D. G., Day, N. A., Honn, K. V., & Sloane, B. F. (1992, February). Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. The Biochemical Journal, 282(Pt 1), 273–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Almeida, P. C., Nantes, I. L., Chagas, J. R., Rizzi, C. C., Faljoni-Alario, A., Carmona, E., et al. (2001, January). Cathepsin B activity regulation. Heparin-like glycosaminogylcans protect human cathepsin B from alkaline pH-induced inactivation. The Journal of Biological Chemistry, 276(2), 944–951.

    Article  CAS  PubMed  Google Scholar 

  37. Almeida, P. C., Nantes, I. L., Rizzi, C. C., Júdice, W. A., Chagas, J. R., Juliano, L., et al. (1999, October). Cysteine proteinase activity regulation. A possible role of heparin and heparin-like glycosaminoglycans. The Journal of Biological Chemistry, 274(43), 30433–30438.

    Article  CAS  PubMed  Google Scholar 

  38. Nascimento, F. D., Rizzi, C. C., Nantes, I. L., Stefe, I., Turk, B., Carmona, A. K., et al. (2005, April). Cathepsin X binds to cell surface heparan sulfate proteoglycans. Archives of Biochemistry and Biophysics, 436(2), 323–332.

    Article  CAS  PubMed  Google Scholar 

  39. Karamanos, N. K., Theocharis, A. D., Neill, T., & Iozzo, R. V. (2019, January). Matrix modeling and remodeling: A biological interplay regulating tissue homeostasis and diseases. Matrix Biology, 75-76(1–11).

    Google Scholar 

  40. Goldshmidt, O., Zcharia, E., Abramovitch, R., Metzger, S., Aingorn, H., Friedmann, Y., et al. (2002, July). Cell surface expression and secretion of heparanase markedly promote tumor angiogenesis and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 99(15), 10031–10036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sanderson, R. D., Elkin, M., Rapraeger, A. C., Ilan, N., & Vlodavsky, I. (2017, January). Heparanase regulation of cancer, autophagy and inflammation: New mechanisms and targets for therapy. The FEBS Journal, 284(1), 42–55.

    Article  CAS  PubMed  Google Scholar 

  42. Meirovitz, A., Goldberg, R., Binder, A., Rubinstein, A. M., Hermano, E., & Elkin, M. (2013, May). Heparanase in inflammation and inflammation-associated cancer. The FEBS Journal, 280(10), 2307–2319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goldshmidt, O., Nadav, L., Aingorn, H., Irit, C., Feinstein, N., Ilan, N., et al. (2002, November). Human heparanase is localized within lysosomes in a stable form. Experimental Cell Research, 281(1), 50–62.

    Article  CAS  PubMed  Google Scholar 

  44. Shafat, I., Vlodavsky, I., & Ilan, N. (2006, August 18). Characterization of mechanisms involved in secretion of active heparanase. The Journal of Biological Chemistry, 281(33), 23804–23811.

    Article  CAS  PubMed  Google Scholar 

  45. Gingis-Velitski, S., Zetser, A., Kaplan, V., Ben-Zaken, O., Cohen, E., Levy-Adam, F., et al. (2004, November 15). Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans. The Journal of Biological Chemistry, 279(42), 44084–44092.

    Article  CAS  PubMed  Google Scholar 

  46. Nadir, Y., Sarig, G., Axelman, E., Meir, A., Wollner, M., Shafat, I., et al. (2014, September). Heparanase procoagulant activity is elevated and predicts survival in non-small cell lung cancer patients. Thrombosis Research, 134(3), 639–642.

    Article  CAS  PubMed  Google Scholar 

  47. Irimura, T., Nakajima, M., Di Ferrante, N., & Nicolson, G. L. (1983, April). High-speed gel-permeation chromatography of glycosaminoglycans: Its application to the analysis of heparan sulfate of embryonic carcinoma and its degradation products by tumor cell-derived heparanase. Analytical Biochemistry, 130(2), 461–468.

    Article  CAS  PubMed  Google Scholar 

  48. Kapoor, R., & Prehm, P. (1983, December). Changes in proteoglycan composition of F9 teratocarcinoma cells upon differentiation. European Journal of Biochemistry, 137(3), 589–595.

    Google Scholar 

  49. Nakajima, M., Irimura, T., Di Ferrante, N., & Nicolson, G. L. (1984, February 25). Metastatic melanoma cell heparanase. Characterization of heparan sulfate degradation fragments produced by B16 melanoma endoglucuronidase. The Journal of Biological Chemistry, 259(4), 2283–2290.

    CAS  PubMed  Google Scholar 

  50. Eldor, A., Bar-Ner, M., Yahalom, J., Fuks, Z., & Vlodavsky, I. (1987, October). Role of heparanase in platelet and tumor cell interactions with the subendothelial extracellular matrix. Seminars in Thrombosis and Hemostasis, 13(4), 475–488.

    Article  CAS  PubMed  Google Scholar 

  51. Bar-Ner, M., Kramer, M. D., Schirrmacher, V., Ishai-Michaeli, R., Fuks, Z., & Vlodavsky, I. (1985, April). Sequential degradation of heparan sulfate in the subendothelial extracellular matrix by highly metastatic lymphoma cells. International Journal of Cancer, 35(4), 483–491.

    Article  CAS  PubMed  Google Scholar 

  52. Liotta, L. A., Rao, C. N., & Wewer, U. M. (1986). Biochemical interactions of tumor cells with the basement membrane. Annual Review of Biochemistry, 55, 1037–1057.

    Article  CAS  PubMed  Google Scholar 

  53. Vlodavsky I, Ilan N, Nadir Y, Brenner B, Katz BZ, Naggi A, Torri G, Casu B, Sasisekharan R. (2008) Heparanase, heparin and the coagulation system in cancer progression. Thromb Res. 2007;120 Suppl 2:S112-20. Review. Erratum in: Thromb Res. 123(1):187–90.

    Google Scholar 

  54. Gomes AM, Kozlowski EO, Borsig L, Teixeira FC, Vlodavsky I, Pavão MS. (2015, April). Antitumor properties of a new non-anticoagulant heparin analog from the mollusk Nodipecten nodosus: Effect on P-selectin, heparanase, metastasis and cellular recruitment. Glycobiology. 25(4):386–93. https://doi.org/10.1093/glycob/cwu119.

  55. Cui H, Tan YX, Österholm C, Zhang X, Hedin U, Vlodavsky I, Li JP. (2016, June). Heparanase expression upregulates platelet adhesion activity and thrombogenicity. Oncotarget. 7(26):39486–39496. https://doi.org/10.18632/oncotarget.8960.

  56. Bar-Ner, M., Eldor, A., Wasserman, L., Matzner, Y., Cohen, I. R., Fuks, Z., et al. (1987, August). Inhibition of heparanase-mediated degradation of extracellular matrix heparan sulfate by non-anticoagulant heparin species. Blood, 70(2), 551–557.

    Article  CAS  PubMed  Google Scholar 

  57. Bashkin, P., Razin, E., Eldor, A., & Vlodavsky, I. (1990, June). Degranulating mast cells secrete an endoglycosidase that degrades heparan sulfate in subendothelial extracellular matrix. Blood, 75(11), 2204–2212.

    Article  CAS  PubMed  Google Scholar 

  58. Godder, K., Vlodavsky, I., Eldor, A., Weksler, B. B., Haimovitz-Freidman, A., & Fuks, Z. (1991, August). Heparanase activity in cultured endothelial cells. Journal of Cellular Physiology, 148(2), 274–280.

    Article  CAS  PubMed  Google Scholar 

  59. Fridman, R., Lider, O., Naparstek, Y., Fuks, Z., Vlodavsky, I., & Cohen, I. R. (1987, January). Soluble antigen induces T lymphocytes to secrete an endoglycosidase that degrades the heparan sulfate moiety of subendothelial extracellular matrix. Journal of Cellular Physiology, 130(1), 85–92.

    Article  CAS  PubMed  Google Scholar 

  60. Vlodavsky, I., Eldor, A., Haimovitz-Friedman, A., Matzner, Y., Ishai-Michaeli, R., Lider, O., et al. (1992). Expression of heparanase by platelets and circulating cells of the immune system: Possible involvement in diapedesis and extravasation. Invasion & Metastasis, 12(2), 112–127.

    CAS  Google Scholar 

  61. Nadir, Y., & Brenner, B. (2009, March). Heparanase coagulation and cancer progression. Best Practice & Research. Clinical Haematology, 22(1), 85–92.

    Article  CAS  Google Scholar 

  62. Crispel, Y., Axelman, E., Tatour, M., Kogan, I., Nevo, N., Brenner, B., et al. (2016, September). Peptides inhibiting heparanase procoagulant activity significantly reduce tumour growth and vascularisation in a mouse model. Thrombosis and Haemostasis, 116(4), 669–678.

    Article  PubMed  Google Scholar 

  63. Kalagara, T., Moutsis, T., Yang, Y., Pappelbaum, K. I., Farken, A., Cladder-Micus, L., et al. (2018, September). The endothelial glycocalyx anchors von Willebrand factor fibers to the vascular endothelium. Blood Advances., 2(18), 2347–2357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Götte, M., & Yip, G. W. (2006, November). Heparanase, hyaluronan, and CD44 in cancers: A breast carcinoma perspective. Cancer Research, 66(21), 10233–10237.

    Article  PubMed  Google Scholar 

  65. Pinhal MA, Almeida MC, Costa AS, Theodoro TR, Serrano RL, Machado CD. (2016) September-October. Expression of heparanase in basal cell carcinoma and squamous cell carcinoma. Anais Brasileiros de Dermatologia 2016 ;91(5):595–600.

    Google Scholar 

  66. Zeng, C., Chen, L., Yang, Z., & Sun, S. (2014, December). The close correlation between heparanase and COX-2 expression in lymphangiogenesis of cervical cancer. Medical Oncology, 31(12), 314.

    Article  PubMed  CAS  Google Scholar 

  67. Zhang, W., Chan, H., Wei, L., Pan, Z., Zhang, J., & Li, L. (2013, November). Overexpression of heparanase in ovarian cancer and its clinical significance. Oncology Reports, 30(5), 2279–2287.

    Article  CAS  PubMed  Google Scholar 

  68. Kundu, S., Xiong, A., Spyrou, A., Wicher, G., Marinescu, V. D., Edqvist, P. D., et al. (2016, December). Heparanase promotes Glioma progression and is inversely correlated with patient survival. Molecular Cancer Research, 14(12), 1243–1253.

    Article  CAS  PubMed  Google Scholar 

  69. Sun, X., Zhang, G., Nian, J., Yu, M., Chen, S., Zhang, Y., et al. (2017, June). Elevated heparanase expression is associated with poor prognosis in breast cancer: A study based on systematic review and TCGA data. Oncotarget, 8(26), 43521–43535.

    PubMed  PubMed Central  Google Scholar 

  70. Jin, H., & Zhou, S. (2017). The functions of Heparanase in human diseases. Mini Reviews in Medicinal Chemistry, 17(6), 541–548.

    Article  CAS  PubMed  Google Scholar 

  71. Hermano, E., Lerner, I., & Elkin, M. (2012, August). Heparanase enzyme in chronic inflammatory bowel disease and colon cancer. Cellular and Molecular Life Sciences, 69(15), 2501–2513.

    Article  CAS  PubMed  Google Scholar 

  72. Bitan, M., Weiss, L., Reibstein, I., Zeira, M., Fellig, Y., Slavin, S., et al. (2010, June). Heparanase upregulates Th2 cytokines, ameliorating experimental autoimmune encephalitis. Molecular Immunology, 47(10), 1890–1898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, X., Wang, B., & Li, J. P. (2014, April). Implications of heparan sulfate and heparanase in neuroinflammation. Matrix Biology, 35, 174–181.

    Article  PubMed  CAS  Google Scholar 

  74. Zhang GL, Zhang X, Wang XM, Li JP. (2014). Towards understanding the roles of heparan sulfate proteoglycans in Alzheimer’s disease. Biomed Res Int. 2014:516028. https://doi.org/10.1155/2014/516028.

  75. Wu, C. Y., Asano, Y., Taniguchi, T., Sato, S., & Yu, H. S. (2015, June). Serum heparanase levels: A protective marker against digital ulcers in patients with systemic sclerosis. The Journal of Dermatology, 42(6), 625–628.

    Article  CAS  PubMed  Google Scholar 

  76. Secchi, M. F., Masola, V., Zaza, G., Lupo, A., Gambaro, G., & Onisto, M. (2015, December). Recent data concerning heparanase: Focus on fibrosis, inflammation and cancer. Biomolecular Concepts, 6(5–6), 415–421.

    CAS  PubMed  Google Scholar 

  77. Changyaleket, B., Deliu, Z., Chignalia, A. Z., & Feinstein, D. L. (2017, September). Heparanase: Potential roles in multiple sclerosis. Journal of Neuroimmunology, 310, 72–81.

    Article  CAS  PubMed  Google Scholar 

  78. Hopkins, J., Yadavalli, T., Agelidis, A. M., & Shukla, D. (2018, December). Host enzymes Heparanase and Cathepsin L promote herpes simplex virus 2 release from cells. Journal of Virology, 92(23).

    Google Scholar 

  79. Khanna, M., Ranasinghe, C., Browne, A. M., Li, J. P., Vlodavsky, I., & Parish, C. R. (2019, March). Is host heparanase required for the rapid spread of heparan sulfate binding viruses? Virology, 529, 1–6.

    Article  CAS  PubMed  Google Scholar 

  80. Rajagopal, C., & Harikumar, K. B. (2018). The origin and functions of Exosomes in Cancer. Frontiers in Oncology, 8, 66.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Théry, C., Zitvogel, L., & Amigorena, S. (2002, August). Exosomes: Composition, biogenesis and function. Nature Reviews. Immunology, 2(8), 569–579.

    Article  PubMed  CAS  Google Scholar 

  82. Thompson, C. A., Purushothaman, A., Ramani, V. C., Vlodavsky, I., & Sanderson, R. D. (2013, April). Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. The Journal of Biological Chemistry, 288(14), 10093–10099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. David, G., & Zimmermann, P. (2016, May). Heparanase tailors syndecan for exosome production. Molecular & Cellular Oncology, 3(3), e1047556.

    Article  CAS  Google Scholar 

  84. Barbosa, G. O., Cervigne, N. K., Carvalho, H. F., & Augusto, T. M. (2017, November). Heparanase 1 involvement in prostate physiopathology. Cell Biology International, 41(11), 1194–1202.

    Article  CAS  PubMed  Google Scholar 

  85. Fares, J., Kashyap, R., & Zimmermann, P. (2017, March). Syntenin: Key player in cancer exosome biogenesis and uptake? Cell Adhesion & Migration, 11(2), 124–126.

    Article  CAS  Google Scholar 

  86. Baietti, M. F., Zhang, Z., Mortier, E., Melchior, A., Degeest, G., Geeraerts, A., et al. (2012, June). Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nature Cell Biology, 14(7), 677–685.

    Article  CAS  PubMed  Google Scholar 

  87. Friand, V., David, G., & Zimmermann, P. (2015, October). Syntenin and syndecan in the biogenesis of exosomes. Biology of the Cell, 107(10), 331–341.

    Article  CAS  PubMed  Google Scholar 

  88. Roucourt, B., Meeussen, S., Bao, J., Zimmermann, P., & David, G. (2015, April). Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Research, 25(4), 412–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ramani, V. C., Vlodavsky, I., Ng, M., Zhang, Y., Barbieri, P., Noseda, A., et al. (2016). Chemotherapy induces expression and release of heparanase leading to changes associated with an aggressive tumor phenotype. Matrix Biology, 09(55), 22–34.

    Article  CAS  Google Scholar 

  90. Bandari, S. K., Purushothaman, A., Ramani, V. C., Brinkley, G. J., Chandrashekar, D. S., Varambally, S., et al. (2018). Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biology, 01(65), 104–118.

    Article  CAS  Google Scholar 

  91. Ramani VC, Zhan F, He J, Barbieri P, Noseda A, Tricot G, Sanderson RD. (2016 Jan). Targeting heparanase overcomes chemoresistance and diminishes relapse in myeloma. Oncotarget. 7(2):1598–607. https://doi.org/10.18632/oncotarget.6408.

  92. Theodoro, T. R., Matos, L. L., Cavalheiro, R. P., Justo, G. Z., Nader, H. B., & Pinhal, M. A. S. (2019, March). Crosstalk between tumor cells and lymphocytes modulates heparanase expression. Journal of Translational Medicine, 17(1), 103.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Heyman, B., & Yang, Y. (2016, November). Mechanisms of heparanase inhibitors in cancer therapy. Experimental Hematology, 44(11), 1002–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pisano, C., Vlodavsky, I., Ilan, N., & Zunino, F. (2014, May). The potential of heparanase as a therapeutic target in cancer. Biochemical Pharmacology, 89(1), 12–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jia, L., & Ma, S. (2016, October). Recent advances in the discovery of heparanase inhibitors as anti-cancer agents. European Journal of Medicinal Chemistry, 121, 209–220.

    Article  CAS  PubMed  Google Scholar 

  96. Miao, H. Q., Elkin, M., Aingorn, E., Ishai-Michaeli, R., Stein, C. A., & Vlodavsky, I. (1999). Inhibition of heparanase activity and tumor metastasis by laminarin sulfate and synthetic phosphorothioate oligodeoxynucleotides. International Journal of Cancer, 83(3), 424–431.

    Article  CAS  PubMed  Google Scholar 

  97. Vlodavsky, I., Singh, P., Boyango, I., Gutter-Kapon, L., Elkin, M., Sanderson, R. D., et al. (2016). Heparanase: From basic research to therapeutic applications in cancer and inflammation. Drug Resistance Updates, 11(29), 54–75.

    Article  Google Scholar 

  98. Chhabra M, Ferro V. (2018, November). The Development of Assays for Heparanase Enzymatic Activity: Towards a Gold Standard. Molecules. 23(11). pii: E2971. https://doi.org/10.3390/molecules23112971.

  99. Dredge K, Hammond E, Davis K, Li CP, Liu L, Johnstone K, Handley P, Wimmer N, Gonda TJ, Gautam A, Ferro V, Bytheway I. (2010, June). The PG500 series: novel heparan sulfate mimetics as potent angiogenesis and heparanase inhibitors for cancer therapy. Invest New Drugs. 28(3):276–83. https://doi.org/10.1007/s10637-009-9245-5.

  100. Galli M, Chatterjee M, Grasso M, Specchia G, Magen H, Einsele H, Celeghini I, Barbieri P, Paoletti D, Pace S, Sanderson RD, Rambaldi A, Nagler A. (2018, October) Phase I study of the heparanase inhibitor roneparstat: an innovative approach for ultiple myeloma therapy. Haematologica. 103(10):e469–e472. https://doi.org/10.3324/haematol.2017.182865.

  101. Weissmann M, Arvatz G, Horowitz N, Feld S, Naroditsky I, Zhang Y, Ng M, Hammond E, Nevo E, Vlodavsky I, Ilan N. (2016, Jan). Heparanaseneutralizing antibodies attenuate lymphoma tumor growth and metastasis. Proc Natl Acad Sci U S A. 113(3):704–9. https://doi.org/10.1073/pnas.1519453113.

  102. Vlodavsky, I., Mohsen, M., Lider, O., Svahn, C. M., Ekre, H. P., Vigoda, M., et al. (1994). Inhibition of tumor metastasis by heparanase inhibiting species of heparin. Invasion & Metastasis, 14(1–6), 290–302.

    CAS  Google Scholar 

  103. Arvatz, G., Weissmann, M., Ilan, N., & Vlodavsky, I. (2016, September). Heparanase and cancer progression: New directions, new promises. Human Vaccines & Immunotherapeutics, 12(9), 2253–2256.

    Article  Google Scholar 

  104. Cassinelli, G., Dal Bo, L., Favini, E., Cominetti, D., Pozzi, S., Tortoreto, M., et al. (2018, February). Supersulfated low-molecular weight heparin synergizes with IGF1R/IR inhibitor to suppress synovial sarcoma growth and metastases. Cancer Letters, 415(187–97).

    Google Scholar 

  105. Cai, Z., Teng, L., Zhou, J., Yan, Y., Zhang, Y., Lv, G., et al. (2019, April). Design and synthesis of a native heparin disaccharide grafted poly-2-aminoethyl methacrylate glycopolymer for inhibition of melanoma cell metastasis. International Journal of Biological Macromolecules, 126, 612–619.

    Article  CAS  PubMed  Google Scholar 

  106. Zubkova, O. V., Ahmed, Y. A., Guimond, S. E., Noble, S. L., Miller, J. H., Alfred Smith, R. A., et al. (2018, November). Dendrimer Heparan sulfate Glycomimetics: Potent Heparanase inhibitors for anticancer therapy. ACS Chemical Biology.

    Google Scholar 

  107. Liu, C. J., Lee, P. H., Lin, D. Y., Wu, C. C., Jeng, L. B., Lin, P. W., et al. (2009, May). Heparanase inhibitor PI-88 as adjuvant therapy for hepatocellular carcinoma after curative resection: A randomized phase II trial for safety and optimal dosage. Journal of Hepatology, 50(5), 958–968.

    Article  CAS  PubMed  Google Scholar 

  108. Hammond, E., Handley, P., Dredge, K., & Bytheway, I. (2013). Mechanisms of heparanase inhibition by the heparan sulfate mimetic PG545 and three structural analogues. FEBS Open Bio, 3, 346–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Brennan, T. V., Lin, L., Brandstadter, J. D., Rendell, V. R., Dredge, K., Huang, X., et al. (2016, January). Heparan sulfate mimetic PG545-mediated antilymphoma effects require TLR9-dependent NK cell activation. The Journal of Clinical Investigation, 126(1), 207–219.

    Article  PubMed  Google Scholar 

  110. Weissmann, M., Bhattacharya, U., Feld, S., Hammond, E., Ilan, N., & Vlodavsky, I. (2019, April). The heparanase inhibitor PG545 is a potent anti-lymphoma drug: Mode of action. Matrix Biology, 77, 58–72.

    Article  CAS  PubMed  Google Scholar 

  111. Baburajeev, C. P., Dhananjaya Mohan, C., Ananda, H., Rangappa, S., Fuchs, J. E., Jagadish, S., et al. (2015, September). Development of novel Triazolo-Thiadiazoles from heterogeneous “Green” catalysis as protein tyrosine phosphatase 1B inhibitors. Scientific Reports, 5(14195).

    Google Scholar 

  112. Baburajeev, C. P., Mohan, C. D., Rangappa, S., Mason, D. J., Fuchs, J. E., Bender, A., et al. (2017, March). Identification of novel class of Triazolo-Thiadiazoles as potent inhibitors of human Heparanase and their anticancer activity. BMC Cancer, 17(1), 235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Iriyama, S., Yamanishi, H., Kunizawa, N., Hirao, T., & Amano, S. (2019, March). 1-(2-Hydroxyethyl)-2-imidazolidinone, a heparanase and matrix metalloproteinase inhibitor, improves epidermal basement membrane structure and epidermal barrier function. Experimental Dermatology, 28(3), 247–253.

    Article  CAS  PubMed  Google Scholar 

  114. Dai, X., Yan, J., Fu, X., Pan, Q., Sun, D., Xu, Y., et al. (2017, October). Aspirin inhibits Cancer metastasis and angiogenesis via targeting Heparanase. Clinical Cancer Research, 23(20), 6267–6278.

    Article  CAS  PubMed  Google Scholar 

  115. McKenzie, E., Tyson, K., Stamps, A., Smith, P., Turner, P., Barry, R., et al. (2000). Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochemical and Biophysical Research Communications, 276(3), 1170–1177.

    Article  CAS  PubMed  Google Scholar 

  116. Levy-Adam, F., Feld, S., Cohen-Kaplan, V., Shteingauz, A., Gross, M., Arvatz, G., et al. (2010, September 3). Heparanase 2 interacts with heparan sulfate with high affinity and inhibits heparanase activity. The Journal of Biological Chemistry, 285(36), 28010–28019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nasmyth, K., Peters, J. M., & Uhlmann, F. (2000, May). Splitting the chromosome: Cutting the ties that bind sister chromatids. Science, 288(5470), 1379–1385.

    Article  CAS  PubMed  Google Scholar 

  118. Thiagalingam, S., Foy, R. L., Cheng, K. H., Lee, H. J., Thiagalingam, A., & Ponte, J. F. (2002, January). Loss of heterozygosity as a predictor to map tumor suppressor genes in cancer: Molecular basis of its occurrence. Current Opinion in Oncology, 14(1), 65–72.

    Article  CAS  PubMed  Google Scholar 

  119. Lasko, D., Cavenee, W., & Nordenskjöld, M. (1991). Loss of constitutional heterozygosity in human cancer. Annual Review of Genetics, 25, 281–314.

    Article  CAS  PubMed  Google Scholar 

  120. Yokota, J., & Sugimura, T. (1993, July). Multiple steps in carcinogenesis involving alterations of multiple tumor suppressor genes. The FASEB Journal, 7(10), 920–925.

    Article  CAS  PubMed  Google Scholar 

  121. Ochoa, B. (2004, January). Can a congenital dysfunctional bladder be diagnosed from a smile? The Ochoa syndrome updated. Pediatric Nephrology, 19(1), 6–12.

    Article  PubMed  Google Scholar 

  122. Woolf, A. S., Stuart, H. M., Roberts, N. A., McKenzie, E. A., Hilton, E. N., & Newman, W. G. (2014, April). Urofacial syndrome: A genetic and congenital disease of aberrant urinary bladder innervation. Pediatric Nephrology, 29(4), 513–518.

    Article  PubMed  Google Scholar 

  123. Daly, S. B., Urquhart, J. E., Hilton, E., McKenzie, E. A., Kammerer, R. A., Lewis, M., et al. (2010, June). Mutations in HPSE2 cause urofacial syndrome. American Journal of Human Genetics, 86(6), 963–969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pang, J., Zhang, S., Yang, P., Hawkins-Lee, B., Zhong, J., Zhang, Y., et al. (2010, June). Loss-of-function mutations in HPSE2 cause the autosomal recessive urofacial syndrome. American Journal of Human Genetics, 86(6), 957–962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Roberts NA, Hilton EN, Lopes FM, Singh S, Randles MJ, Gardiner NJ, Chopra K, Coletta R, Bajwa Z, Hall RJ, Yue WW, Schaefer F, Weber S, Henriksson R, Stuart HM, Hedman H, Newman WG, Woolf AS. (2019 May). Lrig2 and Hpse2, mutated in urofacial syndrome, pattern nerves in the urinary bladder. Kidney Int. 95(5):1138–1152. https://doi.org/10.1016/j.kint.2018.11.040.

  126. Stuart, H. M., Roberts, N. A., Burgu, B., Daly, S. B., Urquhart, J. E., Bhaskar, S., et al. (2013, February). LRIG2 mutations cause urofacial syndrome. American Journal of Human Genetics, 92(2), 259–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Del Rio, T., Nishitani, A. M., Yu, W. M., & Goodrich, L. V. (2013). In vivo analysis of Lrig genes reveals redundant and independent functions in the inner ear. PLoS Genetics, 9(9), e1003824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Rondahl, V., Holmlund, C., Karlsson, T., Wang, B., Faraz, M., Henriksson, R., et al. (2013). Lrig2-deficient mice are protected against PDGFB-induced glioma. PLoS One, 8(9), e73635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Guo, C., Kaneko, S., Sun, Y., Huang, Y., Vlodavsky, I., Li, X., et al. (2015, April). A mouse model of urofacial syndrome with dysfunctional urination. Human Molecular Genetics, 24(7), 1991–1999.

    Article  CAS  PubMed  Google Scholar 

  130. Roberts, N. A., Woolf, A. S., Stuart, H. M., Thuret, R., McKenzie, E. A., Newman, W. G., et al. (2014, August). Heparanase 2, mutated in urofacial syndrome, mediates peripheral neural development in Xenopus. Human Molecular Genetics, 23(16), 4302–4314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Browning, H. M., Gulland, F. M., Hammond, J. A., Colegrove, K. M., & Hall, A. J. (2015, July). Common cancer in a wild animal: The California Sea lion (Zalophus californianus) as an emerging model for carcinogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370(1673).

    Google Scholar 

  132. Browning, H. M., Acevedo-Whitehouse, K., Gulland, F. M., Hall, A. J., Finlayson, J., Dagleish, M. P., et al. (2014, December). Evidence for a genetic basis of urogenital carcinoma in the wild California Sea lion. Proceedings of the Biological Sciences, 281(1796), 20140240.

    Article  CAS  Google Scholar 

  133. Peretti, T., Waisberg, J., Mader, A. M., de Matos, L. L., da Costa, R. B., Conceição, G. M., et al. (2008, August). Heparanase-2, syndecan-1, and extracellular matrix remodeling in colorectal carcinoma. European Journal of Gastroenterology & Hepatology, 20(8), 756–765.

    Article  CAS  Google Scholar 

  134. Giordano, R. J. (2008, August). Heparanase-2 and syndecan-1 in colon cancer: The ugly ducklings or the beautiful swans? European Journal of Gastroenterology & Hepatology, 20(8), 716–718.

    CAS  Google Scholar 

  135. Fujiya, M., Watari, J., Ashida, T., Honda, M., Tanabe, H., Fujiki, T., et al. (2001, October). Reduced expression of syndecan-1 affects metastatic potential and clinical outcome in patients with colorectal cancer. Japanese Journal of Cancer Research, 92(10), 1074–1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lundin, M., Nordling, S., Lundin, J., Isola, J., Wiksten, J. P., & Haglund, C. (2005). Epithelial syndecan-1 expression is associated with stage and grade in colorectal cancer. Oncology, 68(4–6), 306–313.

    Article  CAS  PubMed  Google Scholar 

  137. Goldshmidt, O., Zcharia, E., Cohen, M., Aingorn, H., Cohen, I., Nadav, L., et al. (2003, June). Heparanase mediates cell adhesion independent of its enzymatic activity. The FASEB Journal, 17(9), 1015–1025.

    Article  CAS  PubMed  Google Scholar 

  138. Waisberg, J., Theodoro, T. R., Matos, L. L., Orlandi, F. B., Serrano, R. L., Saba, G. T., et al. (2016, February). Immunohistochemical expression of heparanase isoforms and syndecan-1 proteins in colorectal adenomas. European Journal of Histochemistry, 60(1), 2590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhang, X., Xu, S., Tan, Q., & Liu, L. (2013, December). High expression of heparanase-2 is an independent prognostic parameter for favorable survival in gastric cancer patients. Cancer Epidemiology, 37(6), 1010–1013.

    Article  PubMed  Google Scholar 

  140. Friedmann, Y., Vlodavsky, I., Aingorn, H., Aviv, A., Peretz, T., Pecker, I., et al. (2000, October). Expression of heparanase in normal, dysplastic, and neoplastic human colonic mucosa and stroma. Evidence for its role in colonic tumorigenesis. The American Journal of Pathology, 157(4), 1167–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Melo, C. M., Origassa, C. S., Theodoro, T. R., Matos, L. L., Miranda, T. A., Accardo, C. M., et al. (2015, February). Analysis of heparanase isoforms and cathepsin B in the plasma of patients with gastrointestinal carcinomas: Analytical cross-sectional study. São Paulo Medical Journal, 133(1), 28–35.

    Article  PubMed  Google Scholar 

  142. Fu, J., Khaybullin, R., Zhang, Y., Xia, A., & Qi, X. (2015, June). Gene expression profiling leads to discovery of correlation of matrix metalloproteinase 11 and heparanase 2 in breast cancer progression. BMC Cancer, 15(473).

    Google Scholar 

  143. Fernández-Vega, I., García, O., Crespo, A., Castañón, S., Menéndez, P., Astudillo, A., et al. (2013, January). Specific genes involved in synthesis and editing of heparan sulfate proteoglycans show altered expression patterns in breast cancer. BMC Cancer, 13(24).

    Google Scholar 

  144. Theodoro, T. R., de Matos, L. L., Sant Anna, A. V., Fonseca, F. L., Semedo, P., Martins, L. C., et al. (2007, June). Heparanase expression in circulating lymphocytes of breast cancer patients depends on the presence of the primary tumor and/or systemic metastasis. Neoplasia, 9(6), 504–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Marques, R. M., Focchi, G. R., Theodoro, T. R., Castelo, A., Pinhal, M. A., & Nicolau, S. M. (2012, July). The immunoexpression of heparanase 2 in normal epithelium, intraepithelial, and invasive squamous neoplasia of the cervix. Journal of Lower Genital Tract Disease, 16(3), 256–262.

    Article  PubMed  Google Scholar 

  146. Signorini Filho, R. C., de Azevedo Focchi, G. R., Theodoro, T. R., Pinhal, M. A., & Nicolau, S. M. (2015, February). Immunohistochemical expression of heparanases 1 and 2 in benign tissue and in invasive neoplasia of the endometrium: A case-control study. International Journal of Gynecological Cancer, 25(2), 269–278.

    Article  PubMed  Google Scholar 

  147. de Moura, J. P., Nicolau, S. M., Stávale, J. N., da Silva Pinhal, M. A., de Matos, L. L., Baracat, E. C., et al. (2009, December). Heparanase-2 expression in normal ovarian epithelium and in benign and malignant ovarian tumors. International Journal of Gynecological Cancer, 19(9), 1494–1500.

    Article  PubMed  Google Scholar 

  148. Senapati, S., Wang, F., Ord, T., Coutifaris, C., Feng, R., & Mainigi, M. (2018, October). Superovulation alters the expression of endometrial genes critical to tissue remodeling and placentation. Journal of Assisted Reproduction and Genetics, 35(10), 1799–1808.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Gross-Cohen, M., Feld, S., Naroditsky, I., Nativ, O., Ilan, N., & Vlodavsky, I. (2016, April). Heparanase 2 expression inversely correlates with bladder carcinoma grade and stage. Oncotarget, 7(16), 22556–22565.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Matos, L. L., Suarez, E. R., Theodoro, T. R., Trufelli, D. C., Melo, C. M., Garcia, L. F., et al. (2015). The profile of Heparanase expression distinguishes differentiated thyroid carcinoma from benign neoplasms. PLoS One, 10(10), e0141139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Gross-Cohen, M., Feld, S., Doweck, I., Neufeld, G., Hasson, P., Arvatz, G., et al. (2016, May). Heparanase 2 attenuates head and neck tumor vascularity and growth. Cancer Research, 76(9), 2791–2801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. van Horssen, J., Wesseling, P., van den Heuvel, L. P., de Waal, R. M., & Verbeek, M. M. (2003, August). Heparan sulphate proteoglycans in Alzheimer’s disease and amyloid-related disorders. Lancet Neurology, 2(8), 482–492.

    Article  PubMed  Google Scholar 

  153. García, B., Martín, C., García-Suárez, O., Muñiz-Alonso, B., Ordiales, H., Fernández-Menéndez, S., et al. (2017). Upregulated expression of Heparanase and Heparanase 2 in the brains of Alzheimer’s disease. Journal of Alzheimer’s Disease, 58(1), 185–192.

    Article  PubMed  CAS  Google Scholar 

  154. Jendresen CB, Cui H, Zhang X, Vlodavsky I, Nilsson LN, Li JP. (2015 Febeuary). Overexpression of heparanase lowers the amyloid burden in amyloid-β precursor protein transgenic mice. J Biol Chem. 290(8):5053–64. https://doi.org/10.1074/jbc.M114.600569.

  155. Kirmizis, A., Bartley, S. M., Kuzmichev, A., Margueron, R., Reinberg, D., Green, R., et al. (2004, July). Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes & Development, 18(13), 1592–1605.

    Article  CAS  Google Scholar 

  156. Yu, J., Rhodes, D. R., Tomlins, S. A., Cao, X., Chen, G., Mehra, R., et al. (2007, November). A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Research, 67(22), 10657–10663.

    Article  CAS  PubMed  Google Scholar 

  157. Sparmann, A., & van Lohuizen, M. (2006, November). Polycomb silencers control cell fate, development and cancer. Nature Reviews. Cancer, 6(11), 846–856.

    Article  CAS  PubMed  Google Scholar 

  158. Lee, T. I., Jenner, R. G., Boyer, L. A., Guenther, M. G., Levine, S. S., Kumar, R. M., et al. (2006, April). Control of developmental regulators by Polycomb in human embryonic stem cells. Cell, 125(2), 301–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pinhal, M.A.S., Melo, C.M., Nader, H.B. (2020). The Good and Bad Sides of Heparanase-1 and Heparanase-2. In: Vlodavsky, I., Sanderson, R., Ilan, N. (eds) Heparanase. Advances in Experimental Medicine and Biology, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-34521-1_36

Download citation

Publish with us

Policies and ethics