Skip to main content

Albino Plant Formation in Androgenic Cultures: An Old Problem and New Facts

  • Protocol
  • First Online:
Doubled Haploid Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2288))

Abstract

High frequency of albino plant formation in isolated microspore or anther cultures is a great problem limiting the possibility of their exploitation on a wider scale. It is highly inconvenient as androgenesis-based doubled haploid (DH) technology provides the simplest and shortest way to total homozygosity, highly valued by plant geneticists, biotechnologists and especially, plant breeders, and this phenomenon constitutes a serious limitation of these otherwise powerful tools. The genotype-dependent tendency toward albino plant formation is typical for many monocotyledonous plants, including cereals like wheat, barley, rice, triticale, oat and rye — the most important from the economical point of view. Despite many efforts, the precise mechanism underlying chlorophyll deficiency has not yet been elucidated. In this chapter, we review the data concerning molecular and physiological control over proper/disturbed chloroplast biogenesis, old hypotheses explaining the mechanism of chlorophyll deficiency, and recent studies which shed new light on this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leake JR (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216

    Article  PubMed  Google Scholar 

  2. Kumari M, Clarke HJ, Small I et al (2009) Albinism in plants: a major bottleneck in wide hybridization, androgenesis and doubled haploid culture. Crit Rev Plant Sci 28:393–409. https://doi.org/10.1080/07352680903133252

    Article  CAS  Google Scholar 

  3. Caredda S, Clément C (1999) Androgenesis and albinism in Poaceae: influence of genotype and carbohydrates. In: Clément C, Pacini E, Audran JC (eds) Anther and pollen: from biology to biotechnology. Springer, Berlin, pp 211–228

    Chapter  Google Scholar 

  4. Cistué L, Soriano M, Castillo AM et al (2006) Production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Rep 25:257–264. https://doi.org/10.1007/s00299-005-0047-8

    Article  CAS  PubMed  Google Scholar 

  5. Čalić D, Bohanec B, Devrnja N et al (2013) Impact of abscisic acid in overcoming the problem of albinism in horse chestnut androgenic embryos. Trees 27:755–762. https://doi.org/10.1007/s00468-012-0830-4

    Article  CAS  Google Scholar 

  6. Gajecka M, Marzec M, Chmielewska B et al (2020) Plastid differentiation during microgametogenesis determines green plant regeneration in barley microspore culture. Plant Sci 291:110321

    Article  CAS  PubMed  Google Scholar 

  7. Mullet JE (1993) Dynamic regulation of chloroplast transcription. Plant Physiol 103:309–313. https://doi.org/10.1104/pp.103.2.309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moreira D, Le Guyader H, Philippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405(6782):69–72. https://doi.org/10.1038/35011054

    Article  CAS  PubMed  Google Scholar 

  9. Sugimoto H, Kusumi K, Tozawa Y et al (2004) The virescent-2, mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol 45:985–996

    Article  CAS  PubMed  Google Scholar 

  10. Sadali NM, Sowden RG, Ling Q et al (2019) Differentiation of chromoplasts and other plastids in plants. Plant Cell Rep 38:803–818. https://doi.org/10.1007/s00299-019-02420-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pogson BJ, Albrecht V (2011) Genetic dissection of chloroplast biogenesis and development: an overview. Plant Physiol 155:1545–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Andriankaja M, Dhondt S, De Bodt S et al (2012) Exit from proliferation during leaf development in Arabidopsis thaliana: a not-so-gradual process. Dev Cell 22:64–78

    Article  CAS  PubMed  Google Scholar 

  13. Pribil M, Labs M, Leister D (2014) Structure and dynamics of thylakoids in land plants. J Exp Bot 65(8):1955–1972. https://doi.org/10.1093/jxb/eru090

    Article  CAS  PubMed  Google Scholar 

  14. Dubreuil C, Jin X, de Dios Barajas-López J et al (2018) Establishment of photosynthesis through chloroplast development is controlled by two distinct regulatory phases. Plant Physiol 176:1199–1214. https://doi.org/10.1104/pp.17.00435

    Article  CAS  PubMed  Google Scholar 

  15. Sakamoto W, Takami T (2018) Chloroplast DNA dynamics: copy number, quality control and degradation. Plant Cell Physiol 59:1120–1127. https://doi.org/10.1093/pcp/pcy084

    Article  CAS  PubMed  Google Scholar 

  16. Martin W, Rujan T, Richly E et al (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 99:12246–12251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zoschke R, Bock R (2018) Chloroplast translation: structural and functional organization, operational control, and regulation. Plant Cell 30:745–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57(1):521–565. https://doi.org/10.1146/annurev.arplant.57.032905.105350

    Article  CAS  PubMed  Google Scholar 

  19. Pogson BJ, Woo NS, Förster B, Small ID (2008) Plastid signalling to the nucleus and beyond. Trends Plant Sci 13:602–609

    Article  CAS  PubMed  Google Scholar 

  20. Barajas-López JD, Blanco NE, Strand Å (2013) Plastid-to-nucleus communication, signals controlling the running of the plant cell. Biochim Biophys Acta 1833(2):425–437. https://doi.org/10.1016/j.bbamcr.2012.06.020

    Article  CAS  Google Scholar 

  21. Jarvis P (2008) Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol 179:257–285. https://doi.org/10.1111/j.1469-8137.2008.02452.x

    Article  CAS  PubMed  Google Scholar 

  22. Waters MT, Langdale JA (2009) The making of a chloroplast. EMBO J 28:2861–2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fitter DW, Martin DJ, Copley MJ et al (2002) GLK gene pairs regulate chloroplast development in diverse plant species. Plant J 31:713–727. https://doi.org/10.1046/j.1365-313X.2002.01390.x

    Article  CAS  PubMed  Google Scholar 

  24. Larkin R (2014) Influence of plastids on light signalling and development. Philos Trans R Soc B. https://doi.org/10.1098/rstb.2013.0232

  25. Hernández-Verdeja T, Strand Å (2018) Retrograde signals navigate the path to chloroplast development. Plant Physiol 176:967–976. https://doi.org/10.1104/pp.17.01299

    Article  CAS  PubMed  Google Scholar 

  26. Belcher S, Williams-Carrier R, Stiffler N et al (2015) Large-scale genetic analysis of chloroplast biogenesis in maize. Biochim Biophys Acta Bioenerg 1847:1004–1016. https://doi.org/10.1016/j.bbabio.2015.02.014

    Article  CAS  Google Scholar 

  27. Zhelyazkova P, Sharma CM, Forstner KU et al (2012) The primary transcriptome of barley chloroplasts: numerous noncoding RNAs and the dominating role of the plastid-encoded RNA polymerase. Plant Cell 24:123–136. https://doi.org/10.1105/tpc.111.089441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liebers M, Grübler B, Chevalier F et al (2017) Regulatory shifts in plastid transcription play a key role in morphological conversions of plastids during plant development. Front Plant Sci 8:23. https://doi.org/10.3389/fpls.2017.00023

    Article  PubMed  PubMed Central  Google Scholar 

  29. Börner T, Aleynikova AY, Zubo YO et al (2015) Chloroplast RNA polymerases: role in chloroplast biogenesis. Biochim Biophys Acta Bioenerg 1847:761–769. https://doi.org/10.1016/j.bbabio.2015.02.004

    Article  CAS  Google Scholar 

  30. Pfannschmidt T, Blanvillain R, Merendino L et al (2015) Plastid RNA polymerases: orchestration of enzymes with different evolutionary origins controls chloroplast biogenesis during the plant life cycle. J Exp Bot 66:6957–6973. https://doi.org/10.1093/jxb/erv415

    Article  CAS  PubMed  Google Scholar 

  31. Kanamaru K, Nagashima A, Fujiwara M et al (2001) An arabidopsis sigma factor (SIG2)-dependent expression of plastid-encoded tRNAs in chloroplasts. Plant Cell Physiol 42:1034–1043. https://doi.org/10.1093/pcp/pce155

    Article  CAS  PubMed  Google Scholar 

  32. Hanaoka M, Kanamaru K, Fujiwara M et al (2005) Glutamyl-tRNA mediates a switch in RNA polymerase use during chloroplast biogenesis. EMBO Rep 6:545–550. https://doi.org/10.1038/sj.embor.7400411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Woodson JD, Perez-Ruiz JM, Schmitz RJ et al (2013) Sigma factor-mediated plastid retrograde signals control nuclear gene expression. Plant J 73:1–13. https://doi.org/10.1111/tpj.12011

    Article  CAS  PubMed  Google Scholar 

  34. Liere K, Weihe A, Börner T (2011) The transcription machineries of plant mitochondria and chloroplasts: composition, function, and regulation. J Plant Physiol 168:1345–1360. https://doi.org/10.1016/j.jplph.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  35. De Santis-Maciossek G, Kofer W, Bock A et al (1999) Targeted disruption of the plastid RNA polymerase genes rpoA, B and C1: molecular biology, biochemistry and ultrastructure. Plant J 18:477–489. https://doi.org/10.1046/j.1365-313X.1999.00473.x

    Article  PubMed  Google Scholar 

  36. Hricová A, Quesada V, Micol JL (2006) The SCABRA3 nuclear gene encodes the plastid RpoTp RNA polymerase, which is required for chloroplast biogenesis and mesophyll cell proliferation in Arabidopsis. Plant Physiol 141:942–956. https://doi.org/10.1104/pp.106.080069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tanz SK, Kilian J, Johnsson C et al (2012) The SCO2 protein disulphide isomerase is required for thylakoid biogenesis and interacts with LHCB1 chlorophyll a/b binding proteins which affects chlorophyll biosynthesis in Arabidopsis seedlings. Plant J 69(5):743–754. https://doi.org/10.1111/j.1365-313X.2011.04833.x

    Article  CAS  PubMed  Google Scholar 

  38. Okazaki K, Kabeya Y, Miyagishima S (2010) The evolution of the regulatory mechanism of chloroplast division. Plant Signal Behav 5(2):164–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cortleven A, Schmülling T (2015) Regulation of chloroplast development and function by cytokinin. J Exp Bot 66:4999–5013. https://doi.org/10.1093/jxb/erv132

    Article  CAS  PubMed  Google Scholar 

  40. Cortleven A, Marg I, Yamburenko MV et al (2016) Cytokinin regulates the etioplast-chloroplast transition through the two-component signalling system and activation of chloroplast-related genes. Plant Physiol 172(1):464–478. https://doi.org/10.1104/pp.16.00640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shanmugabalaji V, Chahtane H, Accossato S et al (2018) Chloroplast biogenesis controlled by DELLA-TOC159 interaction in early plant development. Curr Biol 28:2616–2623.e5. https://doi.org/10.1016/j.cub.2018.06.006

    Article  CAS  PubMed  Google Scholar 

  42. Jiang X, Li H, Wang T et al (2012) Gibberellin indirectly promotes chloroplast biogenesis as a means to maintain the chloroplast population of expanded cells. Plant J 72(5):768–780. https://doi.org/10.1111/j.1365-313X.2012.05118.x.

    Article  CAS  PubMed  Google Scholar 

  43. Yamburenko MV, Zubo YO, Borner T (2015) Abscisic acid affects transcription of chloroplast genes via protein phosphatase 2C-dependent activation of nuclear genes: repression by guanosine-30-50-bisdiphosphate and activation by sigma factor 5. Plant J 82:1030–1041. https://doi.org/10.1111/tpj.12876

    Article  CAS  PubMed  Google Scholar 

  44. Wang ZY, Bai MY, Oh E et al (2012) Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 46:701–724. https://doi.org/10.1146/annurev-genet-102209-163450

    Article  CAS  PubMed  Google Scholar 

  45. Merchant SS, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250. https://doi.org/10.1126/science.1143609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yruela I (2005) Copper in plants. Braz J Plant Physiol 17(1):145–156

    Article  CAS  Google Scholar 

  47. Eisenhut M, Hoecker N, Schmidt SB et al (2018) The plastid envelope chloroplast manganese transporter1 is essential for manganese homeostasis in Arabidopsis. Mol Plant 11:955–969

    Article  CAS  PubMed  Google Scholar 

  48. Ferroni L, Baldisserotto C, Fasulo MP et al (2009) Changes in proplastid organization promoted by an inhibitor of DNA-methyltransferase in dark-grown dividing Euglena gracilis cells. Plant Biosyst 143(2):241–251. https://doi.org/10.1080/11263500902722410

    Article  Google Scholar 

  49. Makowska K, Oleszczuk S (2014) Albinism in barley androgenesis. Plant Cell Rep 33:385–392. https://doi.org/10.1007/s00299-013-1543-x

    Article  CAS  PubMed  Google Scholar 

  50. Makowska K, Oleszczuk S, Zimny A et al (2015) Androgenic capability among genotypes of winter and spring barley. Plant Breed 134:668–674. https://doi.org/10.1111/pbr.12312

    Article  CAS  Google Scholar 

  51. Rubtsova M, Gnad H, Melzer M et al (2013) The auxins centrophenoxine and 2, 4-D differ in their effects on non-directly induced chromosome doubling in anther culture of wheat (T. aestivum L.). Plant Biotechnol Rep 7:247–255

    Article  Google Scholar 

  52. Redha A, Talaat A (2008) Improvement of green plant regeneration by manipulation of anther culture induction medium of hexaploid wheat. Plant Cell Tissue Organ Cult 92:141–146. https://doi.org/10.1007/s11240-007-9315-3

    Article  Google Scholar 

  53. Torp AM, Hansen AL, Andersen SB (2001) Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica 119:377–387

    Article  CAS  Google Scholar 

  54. Liu W, Zheng MY, Konzak CF (2002) Improving green plant production via isolated microspore culture in bread wheat (Triticum aestivum L.). Plant Cell Rep 20:821–824

    Article  CAS  Google Scholar 

  55. Zheng MY, Liu W, Weng Y et al (2003) Production of doubled haploids in wheat (Triticum aestivum L.) through microspore embryogenesis triggered by inducer chemicals. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants, a manual. Kluwer Academic, Dordrecht, pp 83–94

    Chapter  Google Scholar 

  56. Haliloglu K, Baenziger PS (2003) The effects of age and size of wheat (Triticum aestivum L.) anther culture-derived embryos on regeneration of green and albino plantlets. Israel J Plant Sci 51(3):207–212

    Article  Google Scholar 

  57. Krzewska M, Czyczyło-Mysza I, Dubas E et al (2015) Identification of QTLs associated with albino plant formation and some new facts concerning green versus albino ratio determinants in triticale (×Triticosecale Wittm.) anther culture. Euphytica 206:263–278. https://doi.org/10.1007/s10681-015-1509-x

    Article  Google Scholar 

  58. Mozgova G, Zaitseva O, Lemesh V (2012) Structural changes in chloroplast genome accompanying albinism in anther culture of wheat and triticale. Cereal Res Commun 40:467–475. https://doi.org/10.1556/CRC.2012.0007

    Article  CAS  Google Scholar 

  59. Pauk J, Puolimatka M, Tóth KL et al (2000) In vitro androgenesis of triticale in isolated microspore culture. Plant cell Tissue Organ Cult 61:221–229

    Article  CAS  Google Scholar 

  60. Tuvesson S, von Post R, Ljungberg A (2003) Triticale anther culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Springer, Dordrecht, pp 117–121. https://doi.org/10.1007/978-94-017-1293-4_18

    Chapter  Google Scholar 

  61. Oleszczuk S, Sowa S, Zimny J (2004) Direct embryogenesis and green plant regeneration from isolated microspores of hexaploid triticale (X Triticosecale Wittmack) cv. Bogo. Plant Cell Rep 22:885–893

    Article  CAS  PubMed  Google Scholar 

  62. Warzecha R, Sowa S, Salak-Warzecha K et al (2005) Doubled haploids in production of male sterility maintaining triticale (Triticosecale Wittmack) lines. Acta Physiol Plant 27:245–250. https://doi.org/10.1007/s11738-005-0029-z5

    Article  Google Scholar 

  63. Grewal D, Gill R, Gosal SS (2006) Role of cysteine in enhancing androgenesis and regeneration of indica rice (Oryza sativa L.). Plant Growth Regul 49:43–47. https://doi.org/10.1007/s10725-006-0021-7

    Article  CAS  Google Scholar 

  64. He T, Yang Y, Tu SB et al (2006) Selection of interspecific hybrids for anther culture of indica rice. Plant Cell Tissue Organ Cult 86:271–277. https://doi.org/10.1007/s11240-006-9117-z

    Article  Google Scholar 

  65. Talebi R, Rahemi MR, Arefi H et al (2007) In vitro plant regeneration through anther culture of some Iranian local rice (Oryza sativa L.) cultivars. PJBS 10:2056–2060. https://doi.org/10.3923/pjbs.2007.2056.2060

    Article  CAS  PubMed  Google Scholar 

  66. Gueye T, Ndir KN (2010) In vitro production of double haploid plants from two rice species (Oryza sativa L. and Oryza glaberrima Steudt.) for the rapid development of new breeding material. Sci Res Essays 5(7):709–713

    Google Scholar 

  67. Kaushal L, Balachandran SM, Ulaganathan K et al (2014) Effect of culture media on improving anther culture response of rice (Oryza sativa L.). Int J Agric Innov Res 3(1):2319–1473

    Google Scholar 

  68. Thomas E, Hoffmann F, Wenzel G (1975) Haploid plantlets from microspores of rye. Z Pflanzen 75:106–113

    Google Scholar 

  69. Immonen S (1999) Androgenetic green plants from winter rye, Secale cereale L., of diverse origin. Plant Breed 118:319–322. https://doi.org/10.1046/j.1439-0523.1999.00381.x

    Article  Google Scholar 

  70. Guo YD, Pulli S (2000) Isolated microspore culture and plant regeneration in rye (Secale cereale L.). Plant Cell Rep 19:875–880

    Article  CAS  PubMed  Google Scholar 

  71. Ma R, Guo YD, Pulli S (2004) Comparison of anther and microspore culture in the embryogenesis and regeneration of rye, Secale cereale. Plant Cell Tissue Organ Cult 76:147–157. https://doi.org/10.1023/B:TICU.0000007294.68389.ed

    Article  Google Scholar 

  72. Tenhola-Roininen T, Tanhuanpää P, Immonen S (2005) The effect of cold and heat treatments on the anther culture response of diverse rye genotypes. Euphytica 145:1–9. https://doi.org/10.1007/s10681-005-8229-6

    Article  Google Scholar 

  73. Kiviharju E, Moisander S, Laurila J (2005) Improved green plant regeneration rates from oat anther culture and the agronomic performance of some DH lines. Plant Cell Tissue Organ Cult 81:1–9. https://doi.org/10.1007/s11240-004-1560-0

    Article  CAS  Google Scholar 

  74. Sidhu P, Davies P (2009) Regeneration of fertile green plants from oat isolated microspore culture. Plant Cell Rep 28:571–577. https://doi.org/10.1007/s00299-009-0684-4

    Article  CAS  PubMed  Google Scholar 

  75. Zieliński K, Krzewska M, Żur I et al (2020) The effect of glutathione and mannitol on androgenesis in anther and isolate d microspore cultures of rye (Secale cereale L.). Plant Cell Tissue Organ Cult 140:577–592. https://doi.org/10.1007/s11240-019-01754-9

    Article  CAS  Google Scholar 

  76. Jähne A, Becker D, Brettschneider R, Lörz H (1994) Regeneration of transgenic, microspore-derived, fertile barley. Theor Appl Genet 89:525–533. https://doi.org/10.1007/BF00225390

    Article  PubMed  Google Scholar 

  77. Ritala A, Mannonen L, Oksman-Caldentey K-M (2001) Factors affecting the regeneration capacity of isolated barley microspores (Hordeum vulgare L). Plant Cell Rep 20:403–407

    Article  CAS  PubMed  Google Scholar 

  78. Grigorova B, Vassileva V, Klimchuk D et al (2012) Drought, high temperature, and their combination affect ultrastructure of chloroplasts and mitochondria in wheat (Triticumaestivum L.) leaves. J Plant Interact 7(3):204–213. https://doi.org/10.1080/17429145.2011.654134

    Article  Google Scholar 

  79. Liu X-G, Xu H, Zhang J-Y, Liang G-W, Liu Y-T, Guo A-G (2012) Effect of low temperature on chlorophyll biosynthesis in albinism line of wheat (Triticum aestivum) FA85i. Physiol Plant 145(3):384–394. https://doi.org/10.1111/j.1399-3054.2012.01604.x

    Article  CAS  PubMed  Google Scholar 

  80. Rodríguez VM, Velasco P, Garrido JL et al (2013) Genetic regulation of cold-induced albinism in the maize inbred line A661. J Exp Bot 64(12):657–3667. https://doi.org/10.1093/jxb/ert189

    Article  CAS  Google Scholar 

  81. Gupta HS, Borthakur DN (1987) Improved rate of callus induction from rice anther culture following microscopic staging of microspores in iron alum-haematoxylin. Theor Appl Genet 74:95–99

    Article  CAS  PubMed  Google Scholar 

  82. Tian Q, Lu C, Li X et al (2015) Low temperature treatments of rice (Oryza sativa L.) anthers changes polysaccharide and protein composition of the anther walls and increases pollen fertility and callus induction. Plant Cell Tissue Organ Cult 120:89–98. https://doi.org/10.1007/s11240-014-0582-5

    Article  CAS  Google Scholar 

  83. Caredda S, Devaux P, Sangwan RS, Clément C (1999) Differential development of plastids during microspore embryogenesis in barley. Protoplasma 208:248–256

    Article  Google Scholar 

  84. Oleszczuk S, Sowa S, Zimny J (2006) Androgenic response to preculture stress in microspore cultures of barley. Protoplasma 228:95–100. https://doi.org/10.1007/s00709-006-0179-x

    Article  CAS  PubMed  Google Scholar 

  85. Labbani Z, de Buyser J, Picard E (2007) Effect of mannitol pretreatment to improve green plant regeneration on isolated microspore culture in Triticum turgidum ssp. durum cv. ‘Jennah Khetifa’. Plant Breed 126:565–568. https://doi.org/10.1111/j.1439-0523.2007.01399.x

    Article  CAS  Google Scholar 

  86. Roberts-Oehlschlager SL, Dunwel JM (1990) Barley anther culture: pretreatment on mannitol stimulates production of microspore-derived embryos. Plant Cell Tissue Organ Cult 20:235–240. https://doi.org/10.1007/BF00041887

    Article  CAS  Google Scholar 

  87. Hoekstra S, van Zijderveld MH, Louwerse JD et al (1992) Anther and microspore culture of Hordeum 6ulgare L. cv Igri. Plant Sci 86:89–96

    Article  CAS  Google Scholar 

  88. Hoekstra S, van Zijderveld MH, Heidekamp F et al (1993) Microspore culture of Hordeum vulgare L.: the influence of density and osmolality. Plant Cell Rep 12:661–665

    Article  CAS  PubMed  Google Scholar 

  89. Hoekstra S, van Bergen S, van Brouwershaven IR et al (1997) Androgenesis in Hordeum vulgare L.: effects of mannitol, calcium and abscisic acid on anther pretreatment. Plant Sci 126:211–218

    Article  CAS  Google Scholar 

  90. Wojnarowiez G, Caredda S, Devaux P (2004) Barley anther culture: assessment of carbohydrate effects on embryo yield, green plant production and differential plastid development in relation with albinism. J Plant Physiol 161:747–755

    Article  CAS  PubMed  Google Scholar 

  91. Castillo AM, Vallés MP, Cistué L (2000) Comparison of anther and isolated microspore cultures in barley. Effects of culture density and regeneration medium. Euphytica 113:1–8

    Article  CAS  Google Scholar 

  92. Lantos C, Bóna L, Boda K et al (2014) Comparative analysis of in vitro anther- and isolated microspore culture in hexaploid Triticale (X Triticosecale Wittmack) for androgenic parameters. Euphytica 197:27–37. https://doi.org/10.1007/s10681-013-1031-y

    Article  CAS  Google Scholar 

  93. Lantos C, Bóna L, Nagy E et al (2018) Induction of in vitro androgenesis in anther and isolated microspore culture of different spelt wheat (Triticum spelta L.) genotypes. Plant Cell Tissue Organ Cult 133:385–393. https://doi.org/10.1007/s11240-018-1391-z

    Article  CAS  Google Scholar 

  94. Li H, Devaux P (2005) Isolated microspore culture overperforms anther culture for green plant regeneration in barley (Hordeum vulgare L.). Acta Physiol Plant 27(4B):611–619

    Article  Google Scholar 

  95. Asif M, Eudes F, Randhawa H et al (2014) Induction medium osmolality improves microspore embryogenesis in wheat and triticale. In Vitro Cell Dev Biol Plant 50:121–126. https://doi.org/10.1007/s11627-013-9545-5

    Article  CAS  Google Scholar 

  96. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  97. Purnhauser L (1991) Stimulation of shoot and root regeneration in wheat Triticum aesti6um callus cultures by copper. Cereal Res Commun 19:419–423

    CAS  Google Scholar 

  98. Purnhauser L, Gyulai G (1993) Effect of copper on shoot and root regeneration in wheat, triticale, rape and tobacco tissue cultures. Plant Cell Tissue Organ Cult 35:131–139

    Article  CAS  Google Scholar 

  99. Wojnarowiez G, Jacquard C, Devaux P (2002) Influence of copper sulfate on anther culture in barley (Hordeum vulgare L.). Plant Sci 162:843–847

    Article  CAS  Google Scholar 

  100. Jacquard C, Nolin F, Hecart C et al (2009) Microspore embryogenesis and programmed cell death in barley: effects of copper on albinism in recalcitrant cultivars. Plant Cell Rep 28:1329–1339. https://doi.org/10.1007/s00299-009-0733-z

    Article  CAS  PubMed  Google Scholar 

  101. Makowska K, Kałużniak M, Oleszczuk S et al (2017) Arabinogalactan proteins improve plant regeneration in barley (Hordeum vulgare) anther culture. Plant Cell Tissue Organ Cult 131:247–257. https://doi.org/10.1007/s11240-017-1280-x

    Article  CAS  Google Scholar 

  102. Ducic T, Polle A (2005) Transport and detoxification of manganese and copper in plants. Braz J Plant Physiol 17(1). https://doi.org/10.1590/S1677-04202005000100009

  103. Nuutila AM, Hämäläinen J, Mannonen L (2000) Optimization of media nitrogen and copper concentrations for regeneration of green plants from polyembryogenic cultures of barley (Hordeum vulgare L). Plant Sci 151:85–92

    Article  CAS  Google Scholar 

  104. Olsen FL (1991) Isolation and cultivation of embryogenic micropores from barley (Hordeum vulgare L.). Hereditas 115:255–266

    Article  CAS  PubMed  Google Scholar 

  105. Mordhorst AP, Lörz H (1993) Embryogenesis and development of isolated barley (Hordeum vulgare L.) microspores are influenced by the amount and composition of nitrogen sources in culture media. J Plant Physiol 142:485–492

    Article  CAS  Google Scholar 

  106. Yoshida S, Kasai Y, Watanabe K et al (1999) Proline stimulates albino regeneration and seed-derived rice callus under high osmosis. J Plant Physiol 155:107–109

    Article  CAS  Google Scholar 

  107. Castillo AM, Sánchez-Díaz RA, Vallés MP (2015) Effect of ovary induction on bread wheat anther culture: ovary genotype and developmental stage, and candidate gene association. Front Plant Sci 6:402. https://doi.org/10.3389/fpls.2015.00402

    Article  PubMed  PubMed Central  Google Scholar 

  108. Broughton S (2008) Ovary co-culture improves embryo and green plant production in anther culture of Australian spring wheat (Triticum aestivum L.). Plant Cell Tissue Organ Cult 95:185–195. https://doi.org/10.1007/s11240-008-9432-7

    Article  Google Scholar 

  109. Cai Q, Szarejko I, Polok K et al (1992) The effect of sugars and growth regulators on embryoid formation and plant regeneration from barley anther culture. Plant Breed 109:218–226

    Article  CAS  Google Scholar 

  110. Tiwari S, Rahimbaev I (1992) Effect of barley starch in comparison and in combination with agar and agarose on anther culture in (Hordeum vulgare L.). Curr Sci 62:410–412

    Google Scholar 

  111. Lentini Z, Reyes P, Martinez CP et al (1995) Androgenesis of highly recalcitrant rice genotypes with maltose and silver nitrate. Plant Sci 110:127–138

    Article  CAS  Google Scholar 

  112. Park S, Ubaidillah M, Kim K (2013) Effect of maltose concentration on plant regeneration of anther culture with different genotypes in rice (Oryza sativa L.). Am J Plant Sci 4(11):2265–2270. https://doi.org/10.4236/ajps.2013.411279

    Article  CAS  Google Scholar 

  113. Estevez P, Clermont I, Marchand S et al (2014) Improving the efficiency of isolated microspore culture in six-row spring barley: II—exploring novel growth regulators to maximize embryogenesis and reduce albinism. Plant Cell Rep 33:871–879. https://doi.org/10.1007/s00299-014-1563-1

    Article  CAS  Google Scholar 

  114. Sah B (2008) Response of genotypes to culture media for callus induction and regeneration of plants from rice anthers. Sci World 6(6):37–43. https://doi.org/10.3126/sw.v6i6.2632

    Article  Google Scholar 

  115. Sriskandarajah S, Sameri M, Lerceteau-Köhler E et al (2015) Increased recovery of green doubled haploid plants from barley anther culture. Crop Sci 55:2806–2812

    Article  CAS  Google Scholar 

  116. Echávarri B, Cistué L (2016) Enhancement in androgenesis efficiency in barley (Hordeum vulgare L.) and bread wheat (Triticum aestivum L.) by the addition of dimethyl sulfoxide to the mannitol pretreatment medium. Plant Cell Tissue Organ Cult 125:11–22. https://doi.org/10.1007/s11240-015-0923-z

    Article  CAS  Google Scholar 

  117. Kao KN, Saleem M, Abrams S et al (1991) Culture conditions for induction of green plants from barley microspores by anther culture methods. Plant Cell Rep 9:595–601

    Article  CAS  PubMed  Google Scholar 

  118. Zhou H, Zheng Y, Konzak CF (1991) Osmotic potential of media affecting green plant percentage in wheat anther culture. Plant Cell Rep 10(2):63–66

    Article  CAS  PubMed  Google Scholar 

  119. Zhou H, Ball ST, Konzak CF (1992) Functional properties of ficoll and their influence on anther culture responses of wheat. Plant Cell Tissue Organ Cult 30(1):77–83

    Article  CAS  Google Scholar 

  120. Vaughn KC, Debonte LR, Wilson KG et al (1980) Organelle alteration as a mechanism for maternal inheritance. Science 11(208):196–198. https://doi.org/10.1126/science.208.4440.196

    Article  Google Scholar 

  121. Sunderland N, Huang B (1985) Barley anther culture-the switch of programme and albinism. Hereditas 103(s3):27–40

    Google Scholar 

  122. Torp AM, Andersen SB (2009) Albinism in microspore culture. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Berlin, pp 155–160. https://doi.org/10.1007/978-1-4020-8854-4_12

    Chapter  Google Scholar 

  123. Caredda S, Doncoeur C, Devaux P, Sangwan RS, Clément C (2000) Plastid differentiation during androgenesis in albino and non-albino producing cultivars of barley (Hordeum vulgare L.). Sex Plant Reprod 13:95–104

    Article  CAS  Google Scholar 

  124. Miyamura S, Kuroiwa T, Nagata T (1987) Disappearance of plastid and mitochondria nucleoids during the formation of generative cells of higher plants revealed by fluorescent microscopy. Protoplasma 141:149–159

    Article  Google Scholar 

  125. Day A, Ellis THN (1984) Chloroplast DNA deletions associated with wheat plants regenerated from pollen: possible basis for maternal inheritance of chloroplasts. Cell 39:359–368

    Article  CAS  PubMed  Google Scholar 

  126. Day A, Ellis THN (1985) Deleted forms of plastid DNA in albino plants from cereal anther culture. Curr Genet 9:671–676

    Article  CAS  Google Scholar 

  127. Hofinger BJ, Ankele E, Gülly C, Heberle-Bors E, Pfosser MF (2001) The involvement of the plastid genome in albino plant regeneration from microspores in wheat. In: Bohanec B (ed) Biotechnological approaches for utilisation of gametic cells. COST 824 final meeting, bled, Slovenia, 1–5 Jul 2000, pp 215–228

    Google Scholar 

  128. Tuvesson IKD, Pedersen S, Andersen SB (1989) Nuclear genes affecting albinism in wheat (Triticum aestivum L.) anther culture. Theor Appl Genet 78:879–883

    Article  CAS  PubMed  Google Scholar 

  129. Dunford R, Walden RM (1991) Plastid genome structure and plastid-related transcript levels in albino barley plants derived from anther culture. Curr Genet 20:339–347. https://doi.org/10.1007/BF00318524

    Article  CAS  PubMed  Google Scholar 

  130. Zhou H, Konzak CF (1992) Genetic control of green plant regeneration from anther culture of wheat. Genome 35:957–961

    Article  Google Scholar 

  131. Ankele E, Heberle-Bors E, Pfosser MF, Hofinger BJ (2005) Searching for mechanisms leading to albino plant formation in cereals. Acta Physiol Plant 27(4B):651–664

    Article  CAS  Google Scholar 

  132. Nielsen NH, Andersen SU, Stougaard J et al (2015) Chromosomal regions associated with the in vitro culture response of wheat (Triticum aestivum L.) microspores. Plant Breed 134(2):55–263

    Google Scholar 

  133. Grosse BA, Deimling S, Geiger HH (1996) Mapping of genes for anther culture ability in rye by molecular markers. Vortr Pflanzen 1996:282–283

    Google Scholar 

  134. Chen X-W, Cistué L, Muñoz-Amatriaín M et al (2007) Genetic markers for doubled haploid response in barley. Euphytica 158:287–294. https://doi.org/10.1007/s10681-006-9310-5

    Article  CAS  Google Scholar 

  135. Muñoz-Amatriaín M, Castillo AM, Chen XW et al (2008) Identification and validation of QTLs for green plant percentage in barley (Hordeum vulgare L.) anther culture. Mol Breed 22:119–129. https://doi.org/10.1007/s11032-008-9161-y

    Article  CAS  Google Scholar 

  136. González JM, Muñiz LM, Jouve N (2005) Mapping of QTLs for androgenetic response based on a molecular genetic map of × Triticosecale Wittmack. Genome Res 48:999–1009. https://doi.org/10.1139/g05-064

    Article  Google Scholar 

  137. Krzewska M, Czyczyło-Mysza I, Dubas E et al (2012) Quantitative trait loci associated with androgenic responsiveness in triticale (× Triticosecale Wittm.) anther culture. Plant Cell Rep 31(11):2099–2108. https://doi.org/10.1007/s00299-012-1320-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yamagishi M, Otani M, Higashi M et al (1998) Chromosomal regions controlling anther culturability in rice (Oryza sativa L.). Euphytica 103:227–234

    Article  CAS  Google Scholar 

  139. Bolibok H, Rakoczy-Trojanowska M (2006) Genetic mapping of QTLs for tissue-culture response in plants. Euphytica 149:73–83

    Article  CAS  Google Scholar 

  140. Seldimirova OA, Kruglova NN (2015) Androclinic embryoidogenesis in vitro in cereals. Biol Bull Rev 5:156–165

    Article  Google Scholar 

  141. Muñoz-Amatriaín M, Svensson JT, Castillo AM et al (2009) Microspore embryogenesis: assignment of genes to embryo formation and green vs. albino plant production. Funct Integr Genom 9:311–323. https://doi.org/10.1007/s10142-009-0113-3

    Article  CAS  Google Scholar 

  142. Nakamura Y (2015) Biosynthesis of reserve starch. In: Nakamura Y (ed) Starch. Springer, Tokyo, pp 161–209

    Chapter  Google Scholar 

  143. Pfannschmidt T (2010) Plastidial retrograde signalling – a true ‘plastid factor’ or just metabolite signatures? Trends Plant Sci 15:427–435

    Article  CAS  PubMed  Google Scholar 

  144. Kobayashi Y, Kanesaki Y, Tanaka A et al (2009) Tetrapyrrole signal as a cell-cycle coordinator from organelle to nuclear DNA replication in plant cells. Proc Natl Acad Sci U S A 106:803–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tiller N, Bock R (2014) The translational apparatus of plastids and its role in plant development. Mol Plant 7:1105–1120. https://doi.org/10.1093/mp/ssu022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwona Żur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Żur, I., Gajecka, M., Dubas, E., Krzewska, M., Szarejko, I. (2021). Albino Plant Formation in Androgenic Cultures: An Old Problem and New Facts. In: Segui-Simarro, J.M. (eds) Doubled Haploid Technology. Methods in Molecular Biology, vol 2288. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1335-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1335-1_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1334-4

  • Online ISBN: 978-1-0716-1335-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics