Skip to main content

Applications of Impedance Flow Cytometry in Doubled Haploid Technology

  • Protocol
  • First Online:
Doubled Haploid Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2289))

  • 838 Accesses

Abstract

Efficient doubled haploid (DH) plant production is of great interest in the plant breeding industry and research because homozygous lines are obtained within a single generation shortening the breeding cycle substantially. DH protocol development can be a time- and resource-consuming process due to numerous factors affecting its success and efficiency. Here we present concepts and examples about how critical success factors can be identified throughout a DH protocol and an early microspore response monitored by simple impedance flow cytometry (IFC) measurements, which will help to optimize each step of an androgenesis-based DH protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blakeslee AF, Belling J, Farnham ME, Bergner AD (1922) A haploid mutant in the jimson weed, “Datura stramonium”. Science 55(1433):646–647. https://doi.org/10.1126/science.55.1433.646

    Article  CAS  PubMed  Google Scholar 

  2. Blakeslee AF, Avery AG (1937) Methods of inducing doubling of chromosomes in plants: By treatment with Colchicine. J Hered 28(12):393–411. https://doi.org/10.1093/oxfordjournals.jhered.a104294

    Article  CAS  Google Scholar 

  3. Hougas RW, Peloquin SJ (1958) The potential of potato haploids in breeding and genetic research. Am Potato J 35(10):701–707. https://doi.org/10.1007/bf02855564

    Article  Google Scholar 

  4. Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163(3862):85–87. https://doi.org/10.1126/science.163.3862.85

    Article  CAS  PubMed  Google Scholar 

  5. Burk LG (1962) Haploids in genetically marked progenies of tobacco. J Hered 53(5):222–226. https://doi.org/10.1093/oxfordjournals.jhered.a107176

    Article  Google Scholar 

  6. Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204(4957):497

    Article  Google Scholar 

  7. Tuvesson S, Dayteg C, Hagberg P, Manninen O, Tanhuanpää P, Tenhola-Roininen T, Kiviharju E, Weyen J, Förster J, Schondelmaier J, Lafferty J, Marn M, Fleck A (2007) Molecular markers and doubled haploids in European plant breeding programmes. Euphytica 158(3):305–312

    Article  CAS  Google Scholar 

  8. Lenaerts B, Collard BCY, Demont M (2019) Review: improving global food security through accelerated plant breeding. Plant Sci 287:110207. https://doi.org/10.1016/j.plantsci.2019.110207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Otto I, Müller A, Kumlehn J (2015) Barley (Hordeum vulgare L.) transformation using embryogenic pollen cultures. In: Wang K (ed) Agrobacterium protocols, vol 1. Springer New York, New York, NY, pp 85–99. https://doi.org/10.1007/978-1-4939-1695-5_7

  10. Maraschin SF, De Priester W, Spaink HP, Wang M (2005) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56(417):1711–1726

    Article  CAS  PubMed  Google Scholar 

  11. Testillano PS (2019) Microspore embryogenesis: targeting the determinant factors of stress-induced cell reprogramming for crop improvement. J Exp Bot 70(11):2965–2978. https://doi.org/10.1093/jxb/ery464

    Article  CAS  PubMed  Google Scholar 

  12. Preston RE (1986) Pollen-ovule ratios in the Cruciferae. Am J Bot 73(12):1732–1740. https://doi.org/10.1002/j.1537-2197.1986.tb09704.x

    Article  Google Scholar 

  13. Cruden RW (2000) Pollen grains: why so many? In: Dafni A, Hesse M, Pacini E (eds) Pollen and pollination. Springer Vienna, Vienna, pp 143–165. https://doi.org/10.1007/978-3-7091-6306-1_8

    Chapter  Google Scholar 

  14. Jürgens A, Witt T, Gottsberger G (2002) Pollen grain numbers, ovule numbers and pollen-ovule ratios in Caryophylloideae: correlation with breeding system, pollination, life form, style number, and sexual system. Sex Plant Reprod 14(5):279–289. https://doi.org/10.1007/s00497-001-0124-2

    Article  Google Scholar 

  15. Wyatt R, Broyles SB, Lipow SR (2000) Pollen-ovule ratios in milkweeds (Asclepiadaceae): an exception that probes the rule. Syst Bot 25(2):171–180

    Article  Google Scholar 

  16. Ferrie AMR, Caswell KL (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tissue Organ Cult 104(3):301–309

    Article  Google Scholar 

  17. Twell D (2011) Male gametogenesis and germline specification in flowering plants. Sex Plant Reprod 24(2):149–160

    Article  PubMed  Google Scholar 

  18. De Storme N, Geelen D (2014) The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant Cell Environ 37(1):1–18

    Article  PubMed  Google Scholar 

  19. Driedonks N, Wolters-Arts M, Huber H, de Boer G-J, Vriezen W, Mariani C, Rieu I (2018) Exploring the natural variation for reproductive thermotolerance in wild tomato species. Euphytica 214(4):67. https://doi.org/10.1007/s10681-018-2150-2

    Article  Google Scholar 

  20. Begcy K, Nosenko T, Zhou L-Z, Fragner L, Weckwerth W, Dresselhaus T (2019) Male sterility in maize after transient heat stress during the tetrad stage of pollen development. Plant Physiol 181:683–700. https://doi.org/10.1104/pp.19.00707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maluszynski M (ed) (2003) Doubled haploid production in crop plants: a manual. Kluwer, Dordrecht/Boston/London

    Google Scholar 

  22. Kasha KJ, Simion E, Oro R, Yao QA, Hu TC, Carlson AR (2001) An improved in vitro technique for isolated microspore culture of barley. Euphytica 120(3):379–385. https://doi.org/10.1023/a:1017564100823

    Article  Google Scholar 

  23. Vergne P, Delvallee I, Dumas C (1987) Rapid assessment of microspore and pollen development stage in wheat and maize using Dapi and membrane Permeabilization. Stain Technol 62(5):299–304. https://doi.org/10.3109/10520298709108014

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Wua Q, Li X, Zheng S, Wang S, Guo L, Zhang L, Custers JBM (2011) Haploid plant production in Zantedeschia aethiopica “Hong Gan” using anther culture. Sci Hortic 129(2):335–342

    Google Scholar 

  25. Zhang C, Tsukuni T, Ikeda M, Sato M, Okada H, Ohashi Y, Matsuno H, Yamamoto T, Wada M, Yoshikawa N, Matsumoto S, Li J, Mimida N, Watanabe M, Suzuki A, Komori S (2013) Effects of the microspore development stage and cold pre-treatment of flower buds on embryo induction in apple (Malus domestica Borkh.) anther culture. J Jpn Soc Hortic Sci 82(2):114–124. https://doi.org/10.2503/jjshs1.82.114

  26. Heidmann I, Schade-Kampmann G, Lambalk J, Ottiger M, Di Berardino M (2016) Impedance flow cytometry: a novel technique in pollen analysis. PLoS One 11(11):e0165531. https://doi.org/10.1371/journal.pone.0165531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gaillard A, Vergne P, Beckert M (1991) Optimization of maize microspore isolation and culture conditions for reliable plant regeneration. Plant Cell Rep 10(2):55–58. https://doi.org/10.1007/bf00236456

    Article  CAS  PubMed  Google Scholar 

  28. Leskovšek L, Jakše M, Bohanec B (2008) Doubled haploid production in rocket (Eruca sativa mill.) through isolated microspore culture. Plant Cell Tissue Organ Cult 93(2):181–189. https://doi.org/10.1007/s11240-008-9359-z

  29. Dehestani-Ardakani M, Shariatpanahi ME, Kafi M (2016) Investigation of the effects of temperature and starvation stresses on microspore embryogenesis in two tetraploid roses (Rosa hybrida L.). Sci Agric 14(2):220–227

    CAS  Google Scholar 

  30. Bhowmik P, Dirpaul J, Polowick P, Ferrie A (2011) A high throughput Brassica napus microspore culture system: influence of percoll gradient separation and bud selection on embryogenesis. Plant Cell Tissue Organ Cult 106(2):359–362. https://doi.org/10.1007/s11240-010-9913-3

  31. Maraschin SF, Lamers GEM, de Pater BS, Spaink HP, Wang M (2003) 14-3-3 isoforms and pattern formation during barley microspore embryogenesis. J Exp Bot 54(384):1033–1043. https://doi.org/10.1093/jxb/erg098

    Article  CAS  Google Scholar 

  32. Yuan SX, Liu YM, Fang ZY, Yang LM, Zhuang M, Zhang YY, Sun PT (2011) Effect of combined cold pretreatment and heat shock on microspore cultures in broccoli. Plant Breed 130(1):80–85. https://doi.org/10.1111/j.1439-0523.2009.01754.x

    Article  Google Scholar 

  33. Hoekstra S, van Zijderveld MH, Heidekamp F, van der Mark F (1993) Microspore culture of Hordeum vulgare L.: the influence of density and osmolality. Plant Cell Rep 12(12):661–665. https://doi.org/10.1007/bf00233415

  34. Asif M, Eudes F, Randhawa H, Amundsen E, Spaner D (2014) Induction medium osmolarity improves microspore embryogenesis in wheat and triticale. In Vitro Cell Dev Biol Plant 50(1):121–126. https://doi.org/10.1007/s11627-013-9545-5

    Article  CAS  Google Scholar 

  35. Li H, Soriano M, Cordewener J, Muino JM, Riksen T, Fukuoka H, Angenent G, Boutilier K (2014) The histone deacetylase inhibitor Trichostatin a promotes totipotencey in the male gametophyte. Plant Cell 26(1):195–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ribalta FM, Croser JS, Ochatt SJ (2012) Flow cytometry enables identification of sporophytic eliciting stress treatments in gametic cells. J Plant Physiol 169(1):104–110

    Article  CAS  PubMed  Google Scholar 

  37. Custers JBM (2003) Microspore culture in rapeseed (Brassica napus L.). In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Springer Netherlands, Dordrecht, pp 185–193. https://doi.org/10.1007/978-94-017-1293-4_29

  38. Kim M, Jang I-C, Kim J-A, Park E-J, Yoon M, Lee Y (2008) Embryogenesis and plant regeneration of hot pepper (Capsicum annuum L.) through isolated microspore culture. Plant Cell Rep 27(3):425–434. https://doi.org/10.1007/s00299-007-0442-4

  39. Kernan Z, Ferrie AMR (2006) Microspore embryogenesis and the development of a double haploidy protocol for cow cockle (Saponaria vaccaria). Plant Cell Rep 25(4):274–280. https://doi.org/10.1007/s00299-005-0064-7

  40. Li H, Devaux P (2001) Enhancement of microspore culture efficiency of recalcitrant barley genotypes. Plant Cell Rep 20(6):475–481. https://doi.org/10.1007/s002990100368

    Article  CAS  Google Scholar 

  41. Supena E, Suharsono S, Jacobsen E, Custers J (2006) Successful development of a shed-microspore culture protocol for doubled haploid production in Indonesian hot pepper (Capsicum annuum L.). Plant Cell Rep 25(1):1–10

    Google Scholar 

  42. Ilic-Grubor K, Attree SM, Fowke LC (1998) Comparative morphological study of zygotic and microspore-derived embryos of Brassica napus L. as revealed by scanning electron microscopy. Ann Bot 82(2):157–165. https://doi.org/10.1006/anbo.1998.0661

  43. Daghma DES, Hensel G, Rutten T, Melzer M, Kumlehn J (2014) Cellular dynamics during early barley pollen embryogenesis revealed by time-lapse imaging. Front Plant Sci 5. https://doi.org/10.3389/fpls.2014.00675

  44. Soriano M, Li H, Jacquard C, Angenent GC, Krochko J, Offringa R, Boutilier K (2014) Plasticity in cell division patterns and auxin transport dependency during in vitro embryogenesis in Brassica napus. Plant Cell 26(6):2568–2581

    Google Scholar 

  45. Schulze D, Pauls KP (1998) Flow cytometric characterization of embryogenic and Gametophytic development in Brassica napus microspore cultures. Plant Cell Physiol 39(2):226–234. https://doi.org/10.1093/oxfordjournals.pcp.a029361

  46. Schulze D, Pauls KP (2002) Flow cytometric analysis of cellulose tracks development of embryogenic Brassica cells in microspore cultures. New Phytol 154(1):249–254. https://doi.org/10.1046/j.1469-8137.2002.00350.x

    Article  Google Scholar 

  47. Heidmann I, Di Berardino M (2017) Impedance flow cytometry as a tool to analyze microspore and pollen quality. In: Schmidt A (ed) Plant germline development: methods and protocols, vol 1669. Springer New York, New York, NY, pp 339–354

    Chapter  Google Scholar 

  48. Driedonks NJW (2018) From flower to fruit in the heat. Reproductive thermotolerance in tomato and its wild relatives. University of Nijmegen, Nijmegen

    Google Scholar 

  49. Begheyn RF (2017) Towards Efficient Doubled Haploid Production in Perennial Ryegrass (Lolium perenne L.). ETH Zuerich, Zürich

    Google Scholar 

  50. Canonge J, Philippot M, Leblanc C, Potin P,  Bodin M (2020) Impedance flow cytometry allows the early prediction of embryo yield in wheat (Triticum aestivum L.) microspore culture. Plant Sci 300: 110586. https://doi.org/10.1016/j.plantsci.2020.110586

  51. Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z Pflanzenphysiol 105(5):427–434. https://doi.org/10.1016/S0044-328X(82)80040-8

  52. Assani A, Bakry F, Kerbellec F, Haïcour R, Wenzel G, Foroughi-Wehr B (2003) Production of haploids from anther culture of banana [Musa balbisiana (BB)]. Plant Cell Rep 21(6):511–516. https://doi.org/10.1007/s00299-002-0557-6

  53. Malik MR, Wang F, Dirpaul JM, Zhou N, Polowick PL, Ferrie AMR, Krochko JE (2007) Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus. Plant Physiol 144(1):134–154. https://doi.org/10.1104/pp.106.092932

  54. Bélanger S, Marchand S, Jacques P-É, Meyers B, Belzile F (2018) Differential expression profiling of microspores during the early stages of isolated microspore culture using the responsive barley cultivar Gobernadora. G3 (Bethesda) 8(5):1603–1614. https://doi.org/10.1534/g3.118.200208

    Article  CAS  Google Scholar 

  55. Gyulai G, Gémesné JA, Sági Z, Venczel G, Pintér P, Kristóf Z, Törjék O, Heszky L, Bottka S, Kiss J, Zatykó L (2000) Doubled haploid development and PCR-analysis of F1 hybrid derived DH-R2 paprika (Capsicum annuum L.) lines. J Plant Physiol 156(2):168–174. https://doi.org/10.1016/S0176-1617(00)80302-8

  56. Fuchs LK, Jenkins G, Phillips DW (2018) Anthropogenic impacts on meiosis in plants. Front Plant Sci 9:1429. https://doi.org/10.3389/fpls.2018.01429

  57. Fairbanks MM, Hardy GESJ, McComb JA (2002) Effect of the fungicide phosphite on pollen fertility of perennial species of the Eucalyptus marginata forest and northern sandplains of Western Australia. Aust J Bot 50(6):769

    Google Scholar 

  58. da Silva Dias JC (2003) Protocol for broccoli microspore culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Springer Netherlands, Dordrecht, pp 195–204. https://doi.org/10.1007/978-94-017-1293-4_30

    Chapter  Google Scholar 

  59. Gemes-Juhasz A, Kristof Z, Vagi P, Lantos C, Pauk J (2009) In vitro anther and isolated microspore culture as tools in sweet and spice pepper breeding. Acta Hortic (829)

    Google Scholar 

  60. Swanson EB, Coumans MP, Wu SC, Barsby TL, Beversdorf WD (1987) Efficient isolation of microspores and the production of microspore-derived embryos from Brassica napus. Plant Cell Rep 6(2):94–97. https://doi.org/10.1007/bf00276661

  61. Hu TC, Ziauddin A, Simion E, Kasha KJ (1995) Isolated microspore culture of wheat (Triticum aestivum L.) in a defined media I. effects of pretreatment, isolation methods, and hormones. In Vitro Cell Dev Biol Plant 31(2):79–83. https://doi.org/10.1007/bf02632241

  62. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirement of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  63. Lichter R (1981) Anther culture of Brassica napus in a liquid culture medium. Z Pflanzenphysiol 103(3):229–237. https://doi.org/10.1016/S0044-328X(81)80155-9

  64. Lippmann R, Friedel S, Mock H-P, Kumlehn J (2015) The low molecular weight fraction of compounds released from immature wheat pistils supports barley pollen embryogenesis. Front Plant Sci 6:498. https://doi.org/10.3389/fpls.2015.00498

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gustafson VD, Baenziger PS, Wright MS, Stroup WW, Yen Y (1995) Isolated wheat microspore culture. Plant Cell Tissue Organ Cult 42(2):207–213. https://doi.org/10.1007/bf00034239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Heidmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Heidmann, I., Di Berardino, M. (2021). Applications of Impedance Flow Cytometry in Doubled Haploid Technology. In: Segui-Simarro, J.M. (eds) Doubled Haploid Technology. Methods in Molecular Biology, vol 2289. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1331-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1331-3_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1330-6

  • Online ISBN: 978-1-0716-1331-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics