Skip to main content

Evolution and Phylogeny of MicroRNAs — Protocols, Pitfalls, and Problems

  • Protocol
  • First Online:
miRNomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2257))

Abstract

MicroRNAs are important regulators in many eukaryotic lineages. Typical miRNAs have a length of about 22nt and are processed from precursors that form a characteristic hairpin structure. Once they appear in a genome, miRNAs are among the best-conserved elements in both animal and plant genomes. Functionally, they play an important role in particular in development. In contrast to protein-coding genes, miRNAs frequently emerge de novo. The genomes of animals and plants harbor hundreds of mutually unrelated families of homologous miRNAs that tend to be persistent throughout evolution. The evolution of their genomic miRNA complement closely correlates with important morphological innovation. In addition, miRNAs have been used as valuable characters in phylogenetic studies. An accurate and comprehensive annotation of miRNAs is required as a basis to understand their impact on phenotypic evolution. Since experimental data on miRNA expression are limited to relatively few species and are subject to unavoidable ascertainment biases, it is inevitable to complement miRNA sequencing by homology based annotation methods. This chapter reviews the state of the art workflows for homology based miRNA annotation, with an emphasis on their limitations and open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nature Rev Mol Cell Biol 14:475–488

    Article  CAS  Google Scholar 

  2. Cerutti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50:81–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shabalina SA, Koonin EV (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23:578–587

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bologna NG, Schapire AL, Palatnik JF (2013) Processing of plant microRNA precursors. Brief Funct Genomics 12:37–45

    Article  CAS  PubMed  Google Scholar 

  5. Tarver JE, Donoghue PCJ, Peterson KJ (2012) Do miRNAs have a deep evolutionary history? Bioessays 34:857–866

    Article  CAS  PubMed  Google Scholar 

  6. Piatek MJ, Werner A (2014) Endogenous siRNAs, regulators of internal affairs. Biochem Soc Trans 42:1174–1179, DOI 10.1042/BST20140068

    Google Scholar 

  7. Saçar Demirci MD, Bağcı C, Allmer J (2016) Differential expression of toxoplasma gondii microRNAs in murine and human hosts. In: Leitão A, Enguita F (eds) Non-coding RNAs and Inter-kingdom Communication, Springer, Cham, pp 143–159, DOI 10.1007/978-3-319-39496-1_9

    Chapter  Google Scholar 

  8. Moran Y, Agron M, Praher D, Technau U (2017) The evolutionary origin of plant and animal microRNAs. Nature Eco Evol 1:0027, DOI 10.1038/s41559-016-0027

    Google Scholar 

  9. Bråte J, Neumann RS, Fromm B, Haraldsen AAB, Tarver JE, Suga H, Donoghue PCJ, Peterson KJ, Ruiz-Trillo I, Grini PE, Shalchian-Tabrizi K (2018) Unicellular origin of the animal microRNA machinery. Curr Biol 28:3288-3295, DOI 10.1016/j.cub.2018.08.018

    Google Scholar 

  10. Price N, Cartwright RA, Sabath N, Graur D, Azevedo RB (2011) Neutral evolution of robustness in drosophila microRNA precursors. Mol Biol Evol 28:2115–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hertel J, Lindemeyer M, Missal K, Fried C, Tanzer A, Flamm C, Hofacker IL, Stadler PF, The Students of Bioinformatics Computer Labs 2004 and 2005 (2006) The expansion of the metazoan microRNA repertoire. BMC Genomics 7:15

    Google Scholar 

  12. Hertel J, Stadler PF (2015) The expansion of animal microRNA families revisited. Life 5:905–920, DOI 10.3390/life5010905

    Google Scholar 

  13. Tanzer A, Stadler PF (2004) Molecular evolution of a microRNA cluster. J Mol Biol 339:327–335

    Article  CAS  PubMed  Google Scholar 

  14. Li SC, Chan WC, Hu LY, Lai CH, Hsu CN, Lin Wc (2010) Identification of homologous microRNAs in 56 animal genomes. Genomics 96:1–9, DOI 10.1016/j.ygeno.2010.03.009

    Google Scholar 

  15. Hertel J, Bartschat S, Wintsche A, Otto C, The Students of the Bioinformatics Computer Lab 2011, Stadler PF (2012) Evolution of the let-7 microRNA family. RNA Biology 9:231–241

    Google Scholar 

  16. Guerra-Assunção JA, Enright AJ (2012) Large-scale analysis of microRNA evolution. BMC Genomics 13:218, DOI 10.1186/1471-2164-13-218

    Google Scholar 

  17. McCreight JC, Schneider SE, Wilburn DB, Swanson WJ (2017) Evolution of microRNA in primates. PLoS ONE 12:e0176,596, DOI 10.1371/journal.pone.0176596

    Google Scholar 

  18. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9:277–279

    Google Scholar 

  19. Sempere LF, Cole CN, McPeek MA, Peterson KJ (2006) The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J Exp Zoolog B Mol Dev Evol 306B:575–588

    Article  CAS  Google Scholar 

  20. Heimberg AM, Sempere LF, Moy VN, Donoghue PCJ, Peterson K (2007) MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci USA 105:2946–2950

    Article  Google Scholar 

  21. Heimberg AM, Cowper-Sal⋅lari R, Sémon M, Donoghue PC, Peterson KJ (2010) MicroRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc Natl Acad Sci USA 107:19,379–19,383

    Google Scholar 

  22. Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Peterson KJ (2009) The deep evolution of metazoan microRNAs. Evol Dev 11:50–68

    Article  CAS  PubMed  Google Scholar 

  23. Fu X, Adamski M, Thompson EM (2008) Altered miRNA repertoire in the simplified chordate, Oikopleura dioica. Mol Biol Evol 25:1067–1080

    Article  CAS  PubMed  Google Scholar 

  24. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162, DOI 10.1093/nar/gky1141

    Google Scholar 

  25. Bentwich I, Avniel AA, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770

    Article  CAS  PubMed  Google Scholar 

  26. Berezikov E, Thuemmler F, van Laake LW, Kondova I, Bontrop R, Cuppen E, Plasterk RH (2006) Diversity of microRNAs in human and chimpanzee brain. Nat Genet 38:1375–1377

    Article  CAS  PubMed  Google Scholar 

  27. Lu J, Shen Y, Wu Q, Kumar S, He B, Shi S, Carthew RW, Wang SM, Wu CI (2008) The birth and death of microRNA genes in Drosophila. Nat Genet 40:351–355

    Article  CAS  PubMed  Google Scholar 

  28. Campo-Paysaa F, Sémon M, Cameron RA, Peterson KJ, Schubert M (2011) MicroRNA complements in deuterostomes: origin and evolution of microRNAs. Evol Dev 13:15–27

    Article  CAS  PubMed  Google Scholar 

  29. Marco A, Ninova M, Ronshaugen M, Griffiths-Jones S (2013) Clusters of microRNAs emerge by new hairpins in existing transcripts. Nucleic Acids Res 41:7745–7752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smalheiser NR, Torvik VI (2005) Mammalian microRNAs derived from genomic repeats. Trends Genet 21:322–326

    Article  CAS  PubMed  Google Scholar 

  31. Piriyapongsa J, Mariño Ramírez L, Jordan IK (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176:1323–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou X, Ruan J, Wang G, Zhang W (2007) Characterization and identification of microRNA core promoters in four model species. PLoS Comput Biol 3:e37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Roberts JT, Cooper EA, Favreau CJ, Howell JS, Lane LG, Mills JE, Newman DC, Perry TJ, Russell ME, Wallace BM, Borchert GM (2013) Continuing analysis of microRNA origins: Formation from transposable element insertions and noncoding RNA mutations. Mob Genet Elements 3:e27,755

    Article  Google Scholar 

  34. Gim JA, Ha HS, Ahn KA, Kim DS, Kim HS (2014) Genome-wide identification and classification of microRNAs derived from repetitive elements. Genomics Inform 12:261–267, DOI 10.5808/GI.2014.12.4.261

    Google Scholar 

  35. Cui J, You C, Chen X (2017) The evolution of microRNAs in plants. Curr Opin Plant Biol 35:61–67, DOI 10.1016/j.pbi.2016.11.006

    Google Scholar 

  36. Liang H, Li W (2009) Lowly expressed human microrna genes evolve rapidly. Mol Biol Evol 26:1195–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K, Hu H, Khaitovich P, Kaessmann H (2012) Birth and expression evolution of mammalian microrna genes. Genome Res 23:34–45

    Article  PubMed  CAS  Google Scholar 

  38. Lee CT, Risom T, Strauss WM (2007) Evolutionary conservation of microRNA regulatory circuits: an examination of microrna gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol 26:209–218

    Article  CAS  PubMed  Google Scholar 

  39. Niwa R, Slack FJ (2007) The evolution of animal microRNA function. Curr Opin Genet Dev 17:145–150

    Article  CAS  PubMed  Google Scholar 

  40. Prochnik SE, Rokhsar DS, Aboobaker AA (2007) Evidence for a microRNA expansion in the bilaterian ancestor. Dev Genes Evol 217:73–77

    Article  CAS  PubMed  Google Scholar 

  41. Berezikov E (2011) Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 12:846–860

    Article  CAS  PubMed  Google Scholar 

  42. Dai Z, Chen Z, Ye H, Zhou L, Cao L, Wang Y, Peng S, Chen L (2009) Characterization of microRNAs in cephalochordates reveals a correlation between microRNA repertoire homology and morphological similarity in chordate evolution. Evol Dev 11:41–49

    Article  CAS  PubMed  Google Scholar 

  43. Velandia-Huerto CA, Gittenberger A, Brown FD, Stadler PF, Bermúdez-Santana CI (2016) Automated detection of ncRNAs in the draft genome sequence of a basal chordate: The carpet sea squirt Didemnum vexillum. BMC Genomics 17:591, DOI 10.1186/s12864-016-2934-5

    Google Scholar 

  44. Wang K, Dantec C, Lemaire P, Onuma TA, Nishida H (2017) Genome-wide survey of miRNAs and their evolutionary history in the ascidian, Halocynthia roretzi. BMC Genomics 18:314, DOI 10.1186/s12864-017-3707-5

    Google Scholar 

  45. Nozawa M, Miura S, Nei M (2010) Origins and evolution of MicroRNA genes in Drosophila species. Genome Biol Evol 2:180–189, DOI 10.1093/gbe/evq009

    Google Scholar 

  46. Eddy SR, Durbin R (1994) RNA sequence analysis using covariance models. Nucleic Acids Res 22:2079–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nawrocki EP, Eddy SR (2007) Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 3:e56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29:2933–2035, DOI 10.1093/bioinformatics/btt509

    Google Scholar 

  49. Hertel J, de Jong D, Marz M, Rose D, Tafer H, Tanzer A, Schierwater B, Stadler PF (2009) Non-coding RNA annotation of the genome of Trichoplax adhaerens. Nucleic Acids Res 37:1602–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kalvari I, Argasinska J, Quinones-Olvera N, Nawrocki EP, Rivas E, Eddy SR, Bateman A, Finn RD, Petrov AI (2018) Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res 46:D335–D342, DOI 10.1093/nar/gkx1038

    Google Scholar 

  51. Kalvari I, Nawrocki EP, Ontiveros-Palacios N,Argasinska J, Lamkiewicz K, Marz M, Griffiths-Jones S, Toffano-Nioche C, Gautheret D, Weinberg Z, Rivas E, Eddy SR, Finn RD, Bateman A, Petrov AI (2020) Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res 49:D192-D200, DOI 10.1093/nar/gkaa1047

    Google Scholar 

  52. Kozomara A, Griffiths-Jones S (2014) MiRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73, DOI 10.1093/nar/gkt1181

    Google Scholar 

  53. Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF (2008) RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics 9:474

    Google Scholar 

  54. Wheeler TJ, Eddy SR (2013) nhmmer: DNA homology search with profile HMMs. Bioinformatics 29:2487–2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Alg Mol Biol 6:26

    Google Scholar 

  56. Reiche K, Stadler PF (2007) RNAstrand: Reading direction of structured RNAs in multiple sequence alignments. Alg Mol Biol 1:6

    Google Scholar 

  57. Will S, Joshi T, Hofacker IL, Stadler PF, Backofen R (2012) LocARNA-P: Accurate boundary prediction and improved detection of structured RNAs for genome-wide screens. RNA 18:900–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Siebert S, Backofen R (2005) MARNA: multiple alignment and consensus structure prediction of RNAs based on sequence structure comparisons. Bioinformatics 21:3352–3359

    Article  CAS  PubMed  Google Scholar 

  59. Bernhart S, Hofacker IL, Stadler PF (2006) Local RNA base pairing probabilities in large sequences. Bioinformatics 22:614–615

    Article  CAS  PubMed  Google Scholar 

  60. Freyhult E, Gardner PP, Moulton V (2005) A comparison of RNA folding measures. BMC Bioinformatics 6:241, DOI 10.1186/1471-2105-6-241

    Google Scholar 

  61. Clote P, Ferré F, Kranakis E, Krizanc D (2005) Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency. RNA 11:578–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA (2006) Evidence that miRNAs are different from other RNAs. Cell and Molec Life Sci 63:246–254

    Article  CAS  Google Scholar 

  63. Yazbeck AM, Stadler PF, Tout K, Fallmann J (2019) Automatic curation of large comparative animal microRNA data sets. Bioinformatics 35:4553–4559, DOI 10.1093/bioinformatics/btz271

    Google Scholar 

  64. Eggenhofer F, Hofacker IL, Höner zu Siederdissen C (2016) RNAlien – unsupervised RNA family model construction. Nucleic Acids Res 44:8433–8441, DOI 10.1093/nar/gkw558

    Google Scholar 

  65. Lott SC, Schäfer RA, Mann M, Backofen R, Hess WR, Voß B, Georg J (2018) GLASSgo – automated and reliable detection of sRNA homologs from a single input sequence. Front Genet 9:124, DOI 10.3389/fgene.2018.00124

    Google Scholar 

  66. Yazbeck AM, Tout KR, Stadler PF, Hertel J (2017) Towards a consistent, quantitative evaluation of microRNA evolution. J Integrative Bioinf 14:20160,013, DOI 10.1515/jib-2016-0013

    Google Scholar 

  67. Parra-Rincón E, Velandia-Huerto CA, Fallmann J, Gittenberger AA, Brown Almeida FD, Stadler PF, Bermúdez-Santana CI (2020) The genome of the “sea vomit” Didemnum vexillum Submitted

    Google Scholar 

  68. Menzel P, Stadler PF, Gorodkin J (2011) maxAlike: Maximum-likelihood based sequence reconstruction with application to improved primer design for unknown sequences. Bioinformatics 27:317–325

    Article  CAS  PubMed  Google Scholar 

  69. Demirci MDS, Baumbach J, Allmer J (2017) On the performance of pre-microRNA detection algorithms. Nature Comm 8:300

    Article  CAS  Google Scholar 

  70. Williams PH, Eyles R, Weiller G (2012) Plant MicroRNA prediction by supervised machine learning using C5.0 decision trees. J Nucleic Acids 2012:652,979, DOI 10.1155/2012/652979

    Google Scholar 

  71. Hertel J, Stadler PF (2006) Hairpins in a haystack: Recognizing microRNA precursors in comparative genomics data. Bioinformatics 22:e197–e202

    Article  CAS  PubMed  Google Scholar 

  72. Auyeung VC, Ulitsky I, McGeary SE, Bartel DP (2013) Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing. Cell 152(4):844–858

    Google Scholar 

  73. Al Ait L, Yamak Z, Morgenstern B (2013) DIALIGN at GOBICS—multiple sequence alignment using various sources of external information. Nucleic Acids Research 41(W1):W3–W7, DOI 10.1093/nar/gkt283

    Google Scholar 

  74. Jia Y, Wang F, Yang GH, Wang FL, Ma YN, Du ZW, Zhang JW (2006) Human microRNA clusters: Genomic organization and expression profile in leukemia cell lines. Biochem Biophys Res Comm 349:59–68, DOI 10.1016/j.bbrc.2006.07.207

    Google Scholar 

  75. Tanzer A, Riester M, Hertel J, Bermudez-Santana CI, Gorodkin J, Hofacker IL, Stadler PF (2010) Evolutionary genomics of microRNAs and their relatives. In: Caetano-Anolles G (ed) Evolutionary Genomics and Systems Biology, Wiley-Blackwell, Hoboken, NJ, pp 295–327

    Chapter  Google Scholar 

  76. Guo L, Yang S, Zhao Y, Wu Q, Chen F (2013) Dynamic evolution of mir-17-92 gene cluster and related miRNA gene families in vertebrates. Mol Biol Rep 40:3147–3153, DOI 10.1007/s11033-012-2388-z

    Google Scholar 

  77. Zhao BW, Zhou LF, Liu YL, Wan SM, Gao ZXG (2017) Evolution of fish let-7 microRNAs and their expression correlated to growth development in blunt snout bream. Int J Mol Sci 18:646, DOI 10.3390/ijms18030646

    Google Scholar 

  78. Chen L, Heikkinen L, Emily Knott K, Liang Y, Wong G (2015) Evolutionary conservation and function of the human embryonic stem cell specific miR-302/367 cluster. Comp Biochem Physiol D 16:83–98, DOI 10.1016/j.cbd.2015.08.002

    Google Scholar 

  79. Trümbach D, Prakash N (2015) The conserved miR-8/miR-200 microRNA family and their role in invertebrate and vertebrate neurogenesis. Cell Tissue Res 359:161–177

    Article  PubMed  CAS  Google Scholar 

  80. Desvignes T, Contreras A, Postlethwait JH (2014) Evolution of the miR199-214 cluster and vertebrate skeletal development. RNA Biol 11:281–294, DOI 10.4161/rna.28141

    Google Scholar 

  81. Velandia-Huerto CA, Berkemer SJ, Hoffmann A, Retzlaff N, Romero Marroquín LC, Hernández Rosales M, Stadler PF, Bermúdez-Santana CI (2016) Orthologs, turn-over, and remolding of tRNAs in primates and fruit flies. BMC Genomics 17:617, DOI 10.1186/s12864-016-2927-4

    Google Scholar 

  82. Berkemer SJ, Hoffmann A, Murray CR, Stadler PF (2017) SMORE: Synyeny MOdulator of repetitive elements. LIFE 7:42, DOI 10.3390/life7040042

    Google Scholar 

  83. Wang Y, Luo J, Zhang H, Lu J (2016) MicroRNAs in the same clusters evolve to coordinately regulate functionally related genes. Mol Biol Evol 33:2232–2247, DOI 10.1093/molbev/msw089

    Google Scholar 

  84. Eggenhofer F, Hofacker IL, Höner zu Siederdissen C (2013) CMCompare Webserver: Comparing RNA families via covariance models. Nucleic Acids Res 41:W499–W503, DOI 10.1093/nar/gkt329

    Google Scholar 

  85. Weinberg Z, Breaker RR (2011) R2R – software to speed the depiction of aesthetic consensus RNA secondary structures. BMC Bioinformatics 12:3, DOI 10.1186/1471-2105-12-3

    Google Scholar 

  86. Sankoff D (1975) Minimal mutation trees of sequences. SIAM J Appl Math 28:35–42

    Article  Google Scholar 

  87. Balogh G, Bernhart SH, Stadler PF, Schor J (2020) A probabilistic version of Sankoff’s maximum parsimony algorithm. J Bioinf Comput Biol 18:2050004, DOI 10.1142/S0219720020500043, in press

    Google Scholar 

  88. Mohammed J, Flynt AS, Panzarino AM, Hossein Mondal MM, DeCruz M, Siepel A, Lai EC (2018) Deep experimental profiling of microRNA diversity, deployment, and evolution across the Drosophila genus. Genome Res 28:52–65, DOI 10.1101/gr.226068.117

    Google Scholar 

  89. Ylla G, Fromm B, Piulachs MD, Belles X (2016) The microRNA toolkit of insects. Sci Rep 6:37,736, DOI 10.1038/srep37736

    Google Scholar 

  90. Tarver JE, Taylor RS, Puttick MN, Lloyd GT, Pett W, Fromm B, Schirrmeister BE, Pisani D, Peterson KJ, Donoghue PCJ (2018) Well-annotated microRNAomes do not evidence pervasive miRNA loss. Genome Biol Evol 10:1457–1470, DOI 10.1093/gbe/evy096

    Google Scholar 

  91. Höner zu Siederdissen C, Hofacker IL (2010) Discriminatory power of RNA family models. Bioinformatics 26:i453–i459, DOI 10.1093/bioinformatics/btq370

    Google Scholar 

  92. Fromm B, Domanska D, Hye E, Ovchinnikov V, Kang W, Aparicio-Puerta E, Johansen M, Flatmark K, Mathelier A, Hovig E, Hackenberg M, Friedländer MR, Peterson KJ (2019) MirGeneDB 2.0: the metazoan microRNA complement. Nucleic Acids Res 48:D132–D141, DOI 10.1093/nar/gkz885

    Google Scholar 

  93. Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y, Cheloufi S, Ma E, Mane S, Hannon GJ, Lawson ND, Wolfe SA, Giraldez AJ (2010) A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328:1694–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139, DOI 10.1038/nrm2632

    Google Scholar 

  95. Li L, Liu Y (2011) Diverse small non-coding RNAs in RNA interference pathways. Methods Mol Biol 764:169–182, DOI 10.1007/978-1-61779-188-8_11

    Google Scholar 

  96. Okamura K (2012) Diversity of animal small RNA pathways and their biological utility. Wiley Interdiscip Rev RNA 3:351–368, DOI 100.1002/wrna.113

    Google Scholar 

  97. Winter J, Link S, Witzigmann D, Hildenbrand C, Previti C, Diederichs S (2013) Loop-miRs: active microRNAs generated from single-stranded loop regions. Nucleic Acids Res 41:5503–5512, DOI 10.1093/nar/gkt251

    Google Scholar 

  98. Okamura K, Ladewig E, Zhou L, Lai EC (2013) Functional small RNAs are generated from select miRNA hairpin loops in flies and mammals. Genes Dev 27:778–792, DOI 10.1101/gad.211698.112

    Google Scholar 

  99. Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130:89–100, DOI 10.1016/j.cell.2007.06.028

    Google Scholar 

  100. Westholm JO, Lai EC (2011) Mirtrons: microRNA biogenesis via splicing. Biochimie 93:1897–904, DOI 10.1016/j.biochi.2011.06.017

    Google Scholar 

  101. Wen J, Ladewig E, Shenker S, Mohammed J, Lai EC (2015) Analysis of nearly one thousand mammalian mirtrons reveals novel features of dicer substrates. PLoS Comput Biol 11:e1004,441, DOI 10.1371/journal.pcbi.1004441

    Google Scholar 

  102. Titov II, Vorozheykin PS (2018) Comparing miRNA structure of mirtrons and non-mirtrons. BMC Genomics 19 S3:114, DOI 10.1186/s12864-018-4473-8

    Google Scholar 

  103. Bortolamiol-Becet D, Hu F, Jee D, Wen J, Okamura K, Lin CJ, Ameres SL, Lai EC (2015) Selective suppression of the splicing-mediated MicroRNA pathway by the terminal uridyltransferase Tailor. Mol Cell 59:217–228, DOI 10.1016/j.molcel.2015.05.034

    Google Scholar 

  104. Rorbach G, Unold O, Konopka BM (2018) Distinguishing mirtrons from canonical miRNAs with data exploration and machine learning methods. Sci Rep 8:7560, DOI 10.1038/s41598-018-25578-3

    Google Scholar 

  105. Da Fonseca BHR, Domingues DS, Paschoal AR (2019) mirtronDB: a mirtron knowledge base. Bioinformatics 35:3873–3874, DOI 10.1093/bioinformatics/btz153

    Google Scholar 

  106. Flynt AS, Greimann JC, Chung WJ, Lima CD, Lai EC (2010) MicroRNA biogenesis via splicing and exosome-mediated trimming in Drosophila. Mol Cell 38:900–907, DOI 10.1016/j.molcel.2010.06.014

    Google Scholar 

  107. Langenberger D, Bartschat S, Hertel J, Hoffmann S, Tafer H, Stadler PF (2011) MicroRNA or not MicroRNA? In: de Souza ON, Telles GP, Palakal MJ (eds) Advances in Bioinformatics and Computational Biology, 6th Brazilian Symposium on Bioinformatics, BSB 2011, Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, vol 6832, pp 1–9

    Google Scholar 

  108. Langenberger D, Çakir MV, Hoffmann S, Stadler PF (2012) Dicer-processed small RNAs: Rules and exceptions. J Exp Zool: Mol Dev Evol 320:35–46

    Article  CAS  Google Scholar 

  109. Roberts JT, Cardin SE, Borchert GM (2014) Burgeoning evidence indicates that microRNAs were initially formed from transposable element sequences. Mob Genet Elements 4:e29,255

    Article  Google Scholar 

  110. Taft RJ, Glazov EA, Lassmann T, Hayashizaki Y, Carninci P, Mattick JS (2009) Small RNAs derived from snoRNAs. RNA 15:1233–1240, DOI 10.1261/rna.1528909

    Google Scholar 

  111. Falaleeva M, Stamm S (2013) Processing of snoRNAs as a new source of regulatory non-coding RNAs: snoRNA fragments form a new class of functional RNAs. Bioessays 35:46–54, DOI 10.1002/bies.201200117

    Google Scholar 

  112. Scott MS, Ono M (2011) From snoRNA to miRNA: Dual function regulatory non-coding RNAs. Biochimie 93:1987–1992, DOI 10.1016/j.biochi.2011.05.026

    Google Scholar 

  113. Maute RL, Schneider C, Sumazin P, Holmes A, Califano A, Basso K, Dalla-Favera R (2013) tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc Natl Acad Sci USA 110:1404–1409, DOI 10.1073/pnas.1206761110

    Google Scholar 

  114. Zhu L, Ge J, Li T, Shen J Yijing anf Guo (2019) tRNA-derived fragments and tRNA halves: The new players in cancers. Cancer Letters 452:31–37, DOI 10.1016/j.canlet.2019.03.012

    Google Scholar 

  115. Chak LL, Mohammed J, Lai EC, Tucker-Kellogg G, Okamura K (2015) A deeply conserved, noncanonical miRNA hosted by ribosomal DNA. RNA 21:375–384, DOI 10.1261/rna.049098.114

    Google Scholar 

  116. Hui JH, Marco A, Hunt S, Melling J, Griffiths-Jones S, Ronshaugen M (2013) Structure, evolution and function of the bi-directionally transcribed iab-4/iab-8 microRNA locus in arthropods. Nucleic Acids Res 41:3352–3361, DOI 10.1093/nar/gks1445

    Google Scholar 

  117. Griffiths-Jones S, Hui JH, Marco A, Ronshaugen M (2011) MicroRNA evolution by arm switching. EMBO Rep 12:172–177, DOI 10.1038/embor.2010.191

    Google Scholar 

Download references

Acknowledgements

This work was funded in part by the German Federal Ministery for Education and Research (BMBF 031A538A, de.NBI/RBC), CAVH was funded by the German Academic Exchange Service (DAAD) (Forschungsstipendien-Promotionen in Deutschland, 2018/19 (Bewerbung 57299294), Ali M. Yazbeck was funded by a doctoral stipend of the National Council for Scientific Research of Lebanon (CNRS-L).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cristian A. Velandia-Huerto , Ali M. Yazbeck or Peter F. Stadler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Velandia-Huerto, C.A., Yazbeck, A.M., Schor, J., Stadler, P.F. (2022). Evolution and Phylogeny of MicroRNAs — Protocols, Pitfalls, and Problems. In: Allmer, J., Yousef, M. (eds) miRNomics. Methods in Molecular Biology, vol 2257. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1170-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1170-8_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1169-2

  • Online ISBN: 978-1-0716-1170-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics