Skip to main content

Advertisement

Log in

The conserved miR-8/miR-200 microRNA family and their role in invertebrate and vertebrate neurogenesis

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Since their discovery in the early 1990s, microRNAs have emerged as key components of the post-transcriptional regulation of gene expression. MicroRNAs occur in the plant and animal kingdoms, with the numbers of microRNAs encoded in the genome increasing together with the evolutionary expansion of the phyla. By base-pairing with complementary sequences usually located within the 3′ untranslated region, microRNAs target mRNAs for degradation, destabilization and/or translational inhibition. Because one microRNA can have many, if not hundreds, of target mRNAs and because one mRNA can, in turn, be targeted by many microRNAs, these small single-stranded RNAs can exert extensive pleiotropic functions during the development, adulthood and ageing of an organism. Specific functions of an increasing number of microRNAs have been described for the invertebrate and vertebrate nervous systems. Among these, the miR-8/miR-200 microRNA family has recently emerged as an important regulator of neurogenesis and gliogenesis and of adult neural homeostasis in the central nervous system of fruit flies, zebrafish and rodents. This highly conserved microRNA family consists of a single ortholog in the fruit fly (miR-8) and five members in vertebrates (miR-200a, miR-200b, miR-200c, miR-141 and miR-429). Here, we review our current knowledge about the functions of the miR-8/miR-200 microRNA family during invertebrate and vertebrate neural development and adult homeostasis and, in particular, about their role in the regulation of neural stem/progenitor cell proliferation, cell cycle exit, transition to a neural precursor/neuroblast state, neuronal differentiation and cell survival and during glial cell growth and differentiation into mature oligodendrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe M, Bonini NM (2013) MicroRNAs and neurodegeneration: role and impact. Trends Cell Biol 23:30–36

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adams MR, Sears R, Nuckolls F, Leone G, Nevins JR (2000) Complex transcriptional regulatory mechanisms control expression of the E2F3 locus. Mol Cell Biol 20:3633–3639

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ahn SM, Cha JY, Kim J, Kim D, Trang HT, Kim YM, Cho YH, Park D, Hong S (2012) Smad3 regulates E-cadherin via miRNA-200 pathway. Oncogene 31:3051–3059

    CAS  PubMed  Google Scholar 

  • Balzer E, Heine C, Jiang Q, Lee VM, Moss EG (2010) LIN28 alters cell fate succession and acts independently of the let-7 microRNA during neurogliogenesis in vitro. Development 137:891–900

    CAS  PubMed  Google Scholar 

  • Bassez G, Camand OJ, Cacheux V, Kobetz A, Dastot-Le Moal F, Marchant D, Catala M, Abitbol M, Goossens M (2004) Pleiotropic and diverse expression of ZFHX1B gene transcripts during mouse and human development supports the various clinical manifestations of the “Mowat-Wilson” syndrome. Neurobiol Dis 15:240–250

    CAS  PubMed  Google Scholar 

  • Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36:D149–D153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonev B, Stanley P, Papalopulu N (2012) MicroRNA-9 modulates Hes1 ultradian oscillations by forming a double-negative feedback loop. Cell Rep 2:10–18

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brabletz S, Brabletz T (2010) The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Rep 11:670–677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G, Firat E, Wellner U, Dimmler A, Faller G, Schubert J et al (2011) The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J 30:770–782

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68:7846–7854

    CAS  PubMed  Google Scholar 

  • Buller B, Chopp M, Ueno Y, Zhang L, Zhang RL, Morris D, Zhang Y, Zhang ZG (2012) Regulation of serum response factor by miRNA-200 and miRNA-9 modulates oligodendrocyte progenitor cell differentiation. Glia 60:1906–1914

    PubMed Central  PubMed  Google Scholar 

  • Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao H, Jheon A, Li X, Sun Z, Wang J, Florez S, Zhang Z, McManus MT, Klein OD, Amendt BA (2013) The Pitx2:miR-200c/141:noggin pathway regulates Bmp signaling and ameloblast differentiation. Development 140:3348–3359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cavallaro M, Mariani J, Lancini C, Latorre E, Caccia R, Gullo F, Valotta M, DeBiasi S, Spinardi L, Ronchi A et al (2008) Impaired generation of mature neurons by neural stem cells from hypomorphic Sox2 mutants. Development 135:541–557

    CAS  PubMed  Google Scholar 

  • Chen D, Pacal M, Wenzel P, Knoepfler PS, Leone G, Bremner R (2009a) Division and apoptosis of E2f-deficient retinal progenitors. Nature 462:925–929

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen HZ, Tsai SY, Leone G (2009b) Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer 9:785–797

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Wang G, Lu C, Guo X, Hong W, Kang J, Wang J (2012) Synergetic cooperation of microRNAs with transcription factors in iPS cell generation. PLoS One 7:e40849

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen S, Lewallen M, Xie T (2013) Adhesion in the stem cell niche: biological roles and regulation. Development 140:255–265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi PS, Zakhary L, Choi WY, Caron S, Alvarez-Saavedra E, Miska EA, McManus M, Harfe B, Giraldez AJ, Horvitz HR et al (2008) Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron 57:41–55

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chong JL, Wenzel PL, Saenz-Robles MT, Nair V, Ferrey A, Hagan JP, Gomez YM, Sharma N, Chen HZ, Ouseph M et al (2009) E2f1-3 switch from activators in progenitor cells to repressors in differentiating cells. Nature 462:930–934

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ciani L, Salinas PC (2005) WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 6:351–362

    CAS  PubMed  Google Scholar 

  • Cochrane DR, Spoelstra NS, Howe EN, Nordeen SK, Richer JK (2009) MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Ther 8:1055–1066

    CAS  PubMed  Google Scholar 

  • Conidi A, Cazzola S, Beets K, Coddens K, Collart C, Cornelis F, Cox L, Joke D, Dobreva MP, Dries R et al (2011) Few Smad proteins and many Smad-interacting proteins yield multiple functions and action modes in TGFbeta/BMP signaling in vivo. Cytokine Growth Factor Rev 22:287–300

    CAS  PubMed  Google Scholar 

  • Coolen M, Bally-Cuif L (2009) MicroRNAs in brain development and physiology. Curr Opin Neurobiol 19:461–470

    CAS  PubMed  Google Scholar 

  • Coolen M, Katz S, Bally-Cuif L (2013) miR-9: a versatile regulator of neurogenesis. Front Cell Neurosci 7:220

    PubMed Central  PubMed  Google Scholar 

  • Danesin C, Houart C (2012) A Fox stops the Wnt: implications for forebrain development and diseases. Curr Opin Genet Dev 22:323–330

    CAS  PubMed  Google Scholar 

  • Dang LT, Wong L, Tropepe V (2012) Zfhx1b induces a definitive neural stem cell fate in mouse embryonic stem cells. Stem Cells Dev 21:2838–2851

    CAS  PubMed  Google Scholar 

  • Danielian PS, Friesenhahn LB, Faust AM, West JC, Caron AM, Bronson RT, Lees JA (2008) E2f3a and E2f3b make overlapping but different contributions to total E2f3 activity. Oncogene 27:6561–6570

    CAS  PubMed Central  PubMed  Google Scholar 

  • Darling DS, Stearman RP, Qi Y, Qiu MS, Feller JP (2003) Expression of Zfhep/deltaEF1 protein in palate, neural progenitors, and differentiated neurons. Gene Expr Patterns 3:709–717

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeGregori J (2002) The genetics of the E2F family of transcription factors: shared functions and unique roles. Biochim Biophys Acta 1602:131–150

    CAS  PubMed  Google Scholar 

  • Du ZW, Ma LX, Phillips C, Zhang SC (2013) miR-200 and miR-96 families repress neural induction from human embryonic stem cells. Development 140:2611–2618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ebert MS, Sharp PA (2010) MicroRNA sponges: progress and possibilities. RNA 16:2043–2050

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellis P, Fagan BM, Magness ST, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L (2004) SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 26:148–165

    CAS  PubMed  Google Scholar 

  • Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874

    CAS  PubMed  Google Scholar 

  • Feng X, Wang Z, Fillmore R, Xi Y (2014) MiR-200, a new star miRNA in human cancer. Cancer Lett 344:166–173

    CAS  PubMed  Google Scholar 

  • Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S et al (2013) Ensembl 2013. Nucleic Acids Res 41:D48–D55

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flynt AS, Lai EC (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9:831–842

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gill JG, Langer EM, Lindsley RC, Cai M, Murphy TL, Kyba M, Murphy KM (2011) Snail and the microRNA-200 family act in opposition to regulate epithelial-to-mesenchymal transition and germ layer fate restriction in differentiating ESCs. Stem Cells 29:764–776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    PubMed  Google Scholar 

  • Graham V, Khudyakov J, Ellis P, Pevny L (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39:749–765

    CAS  PubMed  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601

    CAS  PubMed  Google Scholar 

  • Han MV, Zmasek CM (2009) phyloXML: XML for evolutionary biology and comparative genomics. BMC Bioinformatics 10:356

    PubMed Central  PubMed  Google Scholar 

  • Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, Yeom KH, Han J, Kim VN (2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138:696–708

    CAS  PubMed  Google Scholar 

  • Hill L, Browne G, Tulchinsky E (2013) ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer. Int J Cancer 132:745–754

    CAS  PubMed  Google Scholar 

  • Huang T, Liu Y, Huang M, Zhao X, Cheng L (2010) Wnt1-cre-mediated conditional loss of Dicer results in malformation of the midbrain and cerebellum and failure of neural crest and dopaminergic differentiation in mice. J Mol Cell Biol 2:152–163

    CAS  PubMed  Google Scholar 

  • Huang HN, Chen SY, Hwang SM, Yu CC, Su MW, Mai W, Wang HW, Cheng WC, Schuyler SC, Ma N et al (2013) miR-200c and GATA binding protein 4 regulate human embryonic stem cell renewal and differentiation. Stem Cell Res 12:338–353

    PubMed  Google Scholar 

  • Humbert PO, Verona R, Trimarchi JM, Rogers C, Dandapani S, Lees JA (2000) E2f3 is critical for normal cellular proliferation. Genes Dev 14:690–703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110

    CAS  PubMed  Google Scholar 

  • Hyun S, Lee JH, Jin H, Nam J, Namkoong B, Lee G, Chung J, Kim VN (2009) Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell 139:1096–1108

    CAS  PubMed  Google Scholar 

  • Im HI, Kenny PJ (2012) MicroRNAs in neuronal function and dysfunction. Trends Neurosci 35:325–334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ivey KN, Srivastava D (2010) MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 7:36–41

    CAS  PubMed  Google Scholar 

  • Johnson DG, Schwarz JK, Cress WD, Nevins JR (1993) Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365:349–352

    CAS  PubMed  Google Scholar 

  • Jovicic A, Roshan R, Moisoi N, Pradervand S, Moser R, Pillai B, Luthi-Carter R (2013) Comprehensive expression analyses of neural cell-type-specific miRNAs identify new determinants of the specification and maintenance of neuronal phenotypes. J Neurosci 33:5127–5137

    CAS  PubMed  Google Scholar 

  • Kamachi Y, Kondoh H (2013) Sox proteins: regulators of cell fate specification and differentiation. Development 140:4129–4144

    CAS  PubMed  Google Scholar 

  • Kapsimali M, Kaushik AL, Gibon G, Dirian L, Ernest S, Rosa FM (2011) Fgf signaling controls pharyngeal taste bud formation through miR-200 and Delta-Notch activity. Development 138:3473–3484

    PubMed  Google Scholar 

  • Karpowicz P, Willaime-Morawek S, Balenci L, DeVeale B, Inoue T, Kooy D van der (2009) E-Cadherin regulates neural stem cell self-renewal. J Neurosci 29:3885–3896

  • Karres JS, Hilgers V, Carrera I, Treisman J, Cohen SM (2007) The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell 131:136–145

    CAS  PubMed  Google Scholar 

  • Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP (2009) Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev 18:1093–1108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katsetos CD, Herman MM, Mork SJ (2003) Class III beta-tubulin in human development and cancer. Cell Motil Cytoskeleton 55:77–96

    CAS  PubMed  Google Scholar 

  • Kennell JA, Gerin I, MacDougald OA, Cadigan KM (2008) The microRNA miR-8 is a conserved negative regulator of Wnt signaling. Proc Natl Acad Sci U S A 105:15417–15422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim T, Veronese A, Pichiorri F, Lee TJ, Jeon YJ, Volinia S, Pineau P, Marchio A, Palatini J, Suh SS et al (2011) p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med 208:875–883

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim D, Grun D, Oudenaarden A van (2013) Dampening of expression oscillations by synchronous regulation of a microRNA and its target. Nat Genet 45:1337–1344

  • Knoll B, Nordheim A (2009) Functional versatility of transcription factors in the nervous system: the SRF paradigm. Trends Neurosci 32:432–442

    PubMed  Google Scholar 

  • Kondoh H, Kamachi Y (2010) SOX-partner code for cell specification: regulatory target selection and underlying molecular mechanisms. Int J Biochem Cell Biol 42:391–399

    CAS  PubMed  Google Scholar 

  • Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910–14914

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krieglstein K, Zheng F, Unsicker K, Alzheimer C (2011) More than being protective: functional roles for TGF-beta/activin signaling pathways at central synapses. Trends Neurosci 34:421–429

    CAS  PubMed  Google Scholar 

  • Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    CAS  PubMed  Google Scholar 

  • Kropivsek K, Pickford J, Carter DA (2014) Postnatal dynamics of Zeb2 expression in rat brain: analysis of novel 3′ UTR sequence reveals a miR-9 interacting site. J Mol Neurosci 52:138–147

    CAS  PubMed  Google Scholar 

  • Lamouille S, Subramanyam D, Blelloch R, Derynck R (2013) Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. Curr Opin Cell Biol 25:200–207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    CAS  PubMed  Google Scholar 

  • Leone G, DeGregori J, Yan Z, Jakoi L, Ishida S, Williams RS, Nevins JR (1998) E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev 12:2120–2130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liao X, Xue H, Wang YC, Nazor KL, Guo S, Trivedi N, Peterson SE, Liu Y, Loring JF, Laurent LC (2013) Matched miRNA and mRNA signatures from an hESC-based in vitro model of pancreatic differentiation reveal novel regulatory interactions. J Cell Sci 126:3848–3861

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin CH, Jackson AL, Guo J, Linsley PS, Eisenman RN (2009) Myc-regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J 28:3157–3170

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu A, Niswander LA (2005) Bone morphogenetic protein signalling and vertebrate nervous system development. Nat Rev Neurosci 6:945–954

    CAS  PubMed  Google Scholar 

  • Louvi A, Artavanis-Tsakonas S (2006) Notch signalling in vertebrate neural development. Nat Rev Neurosci 7:93–102

    CAS  PubMed  Google Scholar 

  • Mason I (2007) Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat Rev Neurosci 8:583–596

    CAS  PubMed  Google Scholar 

  • McKinsey GL, Lindtner S, Trzcinski B, Visel A, Pennacchio LA, Huylebroeck D, Higashi Y, Rubenstein JL (2013) Dlx1&2-dependent expression of Zfhx1b (Sip1, Zeb2) regulates the fate switch between cortical and striatal interneurons. Neuron 77:83–98

    CAS  PubMed Central  PubMed  Google Scholar 

  • McNeill E, Van Vactor D (2012) MicroRNAs shape the neuronal landscape. Neuron 75:363–379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mizuguchi Y, Specht S, Lunz JG 3rd, Isse K, Corbitt N, Takizawa T, Demetris AJ (2012) Cooperation of p300 and PCAF in the control of microRNA 200c/141 transcription and epithelial characteristics. PLoS One 7:e32449

    CAS  PubMed Central  PubMed  Google Scholar 

  • Molofsky AV, He S, Bydon M, Morrison SJ, Pardal R (2005) Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 19:1432–1437

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morante J, Vallejo DM, Desplan C, Dominguez M (2013) Conserved miR-8/miR-200 defines a glial niche that controls neuroepithelial expansion and neuroblast transition. Dev Cell 27:174–187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moss EG (2007) Heterochronic genes and the nature of developmental time. Curr Biol 17:R425–R434

    CAS  PubMed  Google Scholar 

  • Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, Oudenaarden A van (2011) MicroRNAs can generate thresholds in target gene expression. Nat Genet 43:854–859

  • Park CY, Jeker LT, Carver-Moore K, Oh A, Liu HJ, Cameron R, Richards H, Li Z, Adler D, Yoshinaga Y et al (2012) A resource for the conditional ablation of microRNAs in the mouse. Cell Rep 1:385–391

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282

    CAS  PubMed  Google Scholar 

  • Pauli A, Rinn JL, Schier AF (2011) Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet 12:136–149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peng C, Li N, Ng YK, Zhang J, Meier F, Theis FJ, Merkenschlager M, Chen W, Wurst W, Prakash N (2012) A unilateral negative feedback loop between miR-200 microRNAs and Sox2/E2F3 controls neural progenitor cell-cycle exit and differentiation. J Neurosci 32:13292–13308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peter ME (2009) Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 8:843–852

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pevny LH, Nicolis SK (2010) Sox2 roles in neural stem cells. Int J Biochem Cell Biol 42:421–424

    CAS  PubMed  Google Scholar 

  • Qureshi IA, Mehler MF (2012) Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci 13:528–541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rebustini IT, Hayashi T, Reynolds AD, Dillard ML, Carpenter EM, Hoffman MP (2012) miR-200c regulates FGFR-dependent epithelial proliferation via Vldlr during submandibular gland branching morphogenesis. Development 139:191–202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Savaskan E, Ravid R, Meier F, Muller-Spahn F, Jockers R (2005) Immunohistochemical localization of Fas-associated phosphatase-1 (FAP-1) in Alzheimer disease hippocampus. Appl Immunohistochem Mol Morphol 13:190–193

    CAS  PubMed  Google Scholar 

  • Saydam O, Shen Y, Wurdinger T, Senol O, Boke E, James MF, Tannous BA, Stemmer-Rachamimov AO, Yi M, Stephens RM et al (2009) Down regulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/beta-catenin signaling pathway. Mol Cell Biol 29:5923–5940

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schickel R, Park SM, Murmann AE, Peter ME (2010) miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol Cell 38:908–915

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seuntjens E, Nityanandam A, Miquelajauregui A, Debruyn J, Stryjewska A, Goebbels S, Nave KA, Huylebroeck D, Tarabykin V (2009) Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Nat Neurosci 12:1373–1380

    CAS  PubMed  Google Scholar 

  • Shi Y, Sun G, Zhao C, Stewart R (2008) Neural stem cell self-renewal. Crit Rev Oncol Hematol 65:43–53

    PubMed Central  PubMed  Google Scholar 

  • Shibata M, Kurokawa D, Nakao H, Ohmura T, Aizawa S (2008) MicroRNA-9 modulates Cajal-Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. J Neurosci 28:10415–10421

    CAS  PubMed  Google Scholar 

  • Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E et al (2009) Down regulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138:592–603

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shyh-Chang N, Daley GQ (2013) Lin28: primal regulator of growth and metabolism in stem cells. Cell Stem Cell 12:395–406

    PubMed Central  PubMed  Google Scholar 

  • Sild M, Ruthazer ES (2011) Radial glia: progenitor, pathway, and partner. Neuroscientist 17:288–302

    PubMed  Google Scholar 

  • Taranova OV, Magness ST, Fagan BM, Wu Y, Surzenko N, Hutton SR, Pevny LH (2006) SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev 20:1187–1202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tomioka M, Nishimoto M, Miyagi S, Katayanagi T, Fukui N, Niwa H, Muramatsu M, Okuda A (2002) Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex. Nucleic Acids Res 30:3202–3213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsai SY, Opavsky R, Sharma N, Wu L, Naidu S, Nolan E, Feria-Arias E, Timmers C, Opavska J, Bruin A de et al (2008) Mouse development with a single E2F activator. Nature 454:1137–1141

  • Uhlmann S, Zhang JD, Schwager A, Mannsperger H, Riazalhosseini Y, Burmester S, Ward A, Korf U, Wiemann S, Sahin O (2010) miR-200bc/429 cluster targets PLCgamma1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene 29:4297–4306

    CAS  PubMed  Google Scholar 

  • Vallejo DM, Caparros E, Dominguez M (2011) Targeting Notch signalling by the conserved miR-8/200 microRNA family in development and cancer cells. EMBO J 30:756–769

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vejnar CE, Zdobnov EM (2012) MiRmap: comprehensive prediction of microRNA target repression strength. Nucleic Acids Res 40:11673–11683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vieira C, Pombero A, Garcia-Lopez R, Gimeno L, Echevarria D, Martinez S (2010) Molecular mechanisms controlling brain development: an overview of neuroepithelial secondary organizers. Int J Dev Biol 54:7–20

    CAS  PubMed  Google Scholar 

  • Wang G, Guo X, Hong W, Liu Q, Wei T, Lu C, Gao L, Ye D, Zhou Y, Chen J et al (2013) Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation. Proc Natl Acad Sci U S A 110:2858–2863

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, Hausen A zur et al (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11:1487–1495

  • Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Peterson KJ (2009) The deep evolution of metazoan microRNAs. Evol Dev 11:50–68

    CAS  PubMed  Google Scholar 

  • Wurst W, Bally-Cuif L (2001) Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2:99–108

    CAS  PubMed  Google Scholar 

  • Xia H, Ng SS, Jiang S, Cheung WK, Sze J, Bian XW, Kung HF, Lin MC (2010) miR-200a-mediated down regulation of ZEB2 and CTNNB1 differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion. Biochem Biophys Res Commun 391:535–541

    CAS  PubMed  Google Scholar 

  • Yang DH, Moss EG (2003) Temporally regulated expression of Lin-28 in diverse tissues of the developing mouse. Gene Expr Patterns 3:719–726

    CAS  PubMed  Google Scholar 

  • Yang JS, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 43:892–903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yates LA, Norbury CJ, Gilbert RJ (2013) The long and short of microRNA. Cell 153:516–519

    CAS  PubMed  Google Scholar 

  • Yokoyama S, Hashimoto M, Shimizu H, Ueno-Kudoh H, Uchibe K, Kimura I, Asahara H (2008) Dynamic gene expression of Lin-28 during embryonic development in mouse and chicken. Gene Expr Patterns 8:155–160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zervas M, Blaess S, Joyner AL (2005) Classical embryological studies and modern genetic analysis of midbrain and cerebellum development. Curr Top Dev Biol 69:101–138

    CAS  PubMed  Google Scholar 

  • Zhang J, Woodhead GJ, Swaminathan SK, Noles SR, McQuinn ER, Pisarek AJ, Stocker AM, Mutch CA, Funatsu N, Chenn A (2010) Cortical neural precursors inhibit their own differentiation via N-cadherin maintenance of beta-catenin signaling. Dev Cell 18:472–479

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to past and present members of the laboratory for their contribution to some of the work reviewed herein and to W. Wurst for his support and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilima Prakash.

Additional information

This work was supported by the EU grant “Systems Biology of Stem Cells and Reprogramming” (SyBoSS [FP7-Health-F4-2010-242129]) and by the Helmholtz Portfolio Theme “Supercomputing and Modelling for the Human Brain” (SMHB). Part of this work was performed within the BMBF funded grant 01GN1009C in the network “Neurogenesis from brain and skin cells”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trümbach, D., Prakash, N. The conserved miR-8/miR-200 microRNA family and their role in invertebrate and vertebrate neurogenesis. Cell Tissue Res 359, 161–177 (2015). https://doi.org/10.1007/s00441-014-1911-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1911-z

Keywords

Navigation