Skip to main content

Differential Expression of Toxoplasma gondii MicroRNAs in Murine and Human Hosts

  • Chapter
  • First Online:
Non-coding RNAs and Inter-kingdom Communication

Abstract

MicroRNAs are short RNA sequences involved in post-transcriptional gene regulation. MicroRNAs are known for a wide variety of species ranging from bacteria to plants. It has become clear that some cross-kingdom regulation is possible especially between viruses and their hosts. We hypothesized that intracellular parasites, like Toxoplasma gondii, similar to viruses would be able to modulate their host’s gene expression. We were able to show that T. gondii produces many putative pre-miRNAs which are actually transcribed. Furthermore, some of these expressed pre-miRNAs have a striking resemblance to host mature miRNAs. Previous studies indicated that T. gondii infection coincides with increased abundance of some miRNAs. Here we were able to show that many of these miRNAs have close relatives in T. gondii which may not be distinguishable using PCR. Taken together, the similarity to host miRNAs, their confirmed expression, and their upregulation during infection, it suggests that T. gondii actively transfers miRNAs to regulate its host. We conclude, that this type of cross-kingdom regulation may be possible, but that targeted analysis is necessary to consolidate our computational findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Riyahi A, Al-Anouti F, Al-Rayes M, Ananvoranich S (2006) Single Argonaute protein from Toxoplasma gondii is involved in the double-stranded RNA induced gene silencing. Int J Parasitol 36(9):1003–1014. doi:10.1016/j.ijpara.2006.04.014

    Google Scholar 

  • Allmer J (2010) Label-free quantitation, an extension to 2DB. Amino Acids 38(4):1075–1087. doi:10.1007/s00726-009-0317-9

    Google Scholar 

  • Allmer J (2014) Computational and bioinformatics methods for microRNA gene prediction. Methods Mol Biol 1107:157–175. doi:10.1007/978-1-62703-748-8_9

    Google Scholar 

  • Allmer J, Yousef M (2012) Computational methods for ab initio detection of microRNAs. Front Genet 3:209. doi:10.3389/fgene.2012.00209

  • Altschul SF, Gish W (1996) Local alignment statistics. Methods Enzymol 266:460–480

    Google Scholar 

  • Andrews S (2010) FASTQC: a quality control tool for high throughput sequence data. Babraham. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  • Batuwita R, Palade V (2009) microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 25(8):989–995. doi:10.1093/bioinformatics/btp107

    Google Scholar 

  • Bentwich I (2008) Identifying human microRNAs. Curr Top Microbiol Immunol 320:257–269

    Google Scholar 

  • Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37(7):766–770. doi:10.1038/ng1590

    Google Scholar 

  • Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Thiel K, Wiswedel B (2009) KNIME—The Konstanz Information Miner

    Google Scholar 

  • Blader IJ, Saeij JP (2009) Communication between Toxoplasma gondii and its host: impact on parasite growth, development, immune evasion, and virulence. APMIS 117(5–6):458–476. doi:10.1111/j.1600-0463.2009.02453.x

    Google Scholar 

  • Boothroyd JC, Dubremetz JF (2008) Kiss and spit: the dual roles of Toxoplasma rhoptries. Nat Rev Microbiol 6(1):79–88. doi:10.1038/nrmicro1800

    Google Scholar 

  • Braun L, Cannella D, Ortet P, Barakat M, Sautel CF, Kieffer S, Garin J, Bastien O, Voinnet O, Hakimi MA (2010) A complex small RNA repertoire is generated by a plant/fungal-like machinery and effected by a metazoan-like Argonaute in the single-cell human parasite Toxoplasma gondii. PLoS Pathog 6(5):e1000920. doi:10.1371/journal.ppat.1000920

    Google Scholar 

  • Cai Y, Chen H, Mo X, Tang Y, Xu X, Zhang A, Lun Z, Lu F, Wang Y, Shen J (2014) Toxoplasma gondii inhibits apoptosis via a novel STAT3-miR-17-92-Bim pathway in macrophages. Cell Signal 26(6):1204–1212. doi:10.1016/j.cellsig.2014.02.013

    Google Scholar 

  • Cakir MV, Allmer J (2010) Systematic computational analysis of potential RNAi regulation in Toxoplasma gondii. In: 2010 5th international symposium on health informatics and bioinformatics. IEEE, Ankara, Turkey, pp 31–38

    Google Scholar 

  • Cannella D, Brenier-Pinchart MP, Braun L, van Rooyen JM, Bougdour A, Bastien O, Behnke MS, Curt RL, Curt A, Saeij JP, Sibley LD, Pelloux H, Hakimi MA (2014) miR-146a and miR-155 delineate a MicroRNA fingerprint associated with Toxoplasma persistence in the host brain. Cell Rep 6(5):928–937. doi:10.1016/j.celrep.2014.02.002

    Google Scholar 

  • Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8(11):884–896. doi:10.1038/nrg2179

    Google Scholar 

  • Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M, Garapati P, Gillespie M, Kamdar MR, Jassal B, Jupe S, Matthews L, May B, Palatnik S, Rothfels K, Shamovsky V, Song H, Williams M, Birney E, Hermjakob H, Stein L, D’Eustachio P (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42(Database issue):D472–477. doi:10.1093/nar/gkt1102

    Google Scholar 

  • D’Eustachio P (2011) Reactome knowledgebase of human biological pathways and processes. Methods Mol Biol 694:49–61. doi:10.1007/978-1-60761-977-2_4

    Google Scholar 

  • Ding J, Zhou S, Guan J (2010) MiRenSVM: towards better prediction of microRNA precursors using an ensemble SVM classifier with multi-loop features. BMC Bioinformatics 11(Suppl 11):S11. doi:10.1186/1471-2105-11-S11-S11

  • English ED, Adomako-Ankomah Y, Boyle JP (2015) Secreted effectors in Toxoplasma gondii and related species: determinants of host range and pathogenesis? Parasite Immunol 37 (3):127–140. doi:10.1111/pim.12166

    Google Scholar 

  • Erson-Bensan AE (2014) Introduction to microRNAs in biological systems. Methods Mol Biol 1107:1–14. doi:10.1007/978-1-62703-748-8_1

    Google Scholar 

  • Gajria B, Bahl A, Brestelli J, Dommer J, Fischer S, Gao X, Heiges M, Iodice J, Kissinger JC, Mackey AJ, Pinney DF, Roos DS, Stoeckert CJ, Jr., Wang H, Brunk BP (2008) ToxoDB: an integrated Toxoplasma gondii database resource. Nucleic Acids Res 36(Database issue):D553–556. doi:10.1093/nar/gkm981

    Google Scholar 

  • Gao Z, Luo X, Shi T, Cai B, Zhang Z, Cheng Z, Zhuang W (2012) Identification and validation of potential conserved microRNAs and their targets in peach (Prunus persica). Mol Cells 34(3):239–249. doi:10.1007/s10059-012-0004-7

    Google Scholar 

  • Gottesman S (2005) Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet 21:399–404. doi:10.1016/j.tig.2005.05.008

    Google Scholar 

  • Grey F (2015) Role of microRNAs in herpesvirus latency and persistence. J Gen Virol 96(Pt 4):739–751. doi:10.1099/vir.0.070862-0

    Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36(Database issue):D154–158. doi:10.1093/nar/gkm952

    Google Scholar 

  • Gudys A, Szczesniak MW, Sikora M, Makalowska I (2013) HuntMi: an efficient and taxon-specific approach in pre-miRNA identification. BMC Bioinform 14:83. doi:10.1186/1471-2105-14-83

  • Hakimi MA, Menard R (2010) Do apicomplexan parasites hijack the host cell microRNA pathway for their intracellular development? F1000 Biol Rep 2. doi:10.3410/B2-42

  • Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431

    Google Scholar 

  • Hoy AM, Lundie RJ, Ivens A, Quintana JF, Nausch N, Forster T, Jones F, Kabatereine NB, Dunne DW, Mutapi F, Macdonald AS, Buck AH (2014) Parasite-derived microRNAs in host serum as novel biomarkers of helminth infection. PLoS Negl Trop Dis 8 (2):e2701. doi:10.1371/journal.pntd.0002701

    Google Scholar 

  • Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z (2007) MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res 35(Web Server issue):W339–344. doi:10.1093/nar/gkm368

    Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36. doi:10.1186/gb-2013-14-4-r36

    Google Scholar 

  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139. doi:10.1038/nrm2632

    Google Scholar 

  • Kondrat RW, McClusky GA, Cooks RG (1978) Multiple reaction monitoring in mass spectrometry/mass spectrometry for direct analysis of complex mixtures. Anal Chem 50:2017–2012. doi:10.1021/ac50036a020

    Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9 (4):357–359. doi:10.1038/nmeth.1923

    Google Scholar 

  • Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive. Nucleic Acids Res 39(Database issue):D19–21. doi:10.1093/nar/gkq1019

    Google Scholar 

  • Li C, Hu J, Hao J, Zhao B, Wu B, Sun L, Peng S, Gao GF, Meng S (2014) Competitive virus and host RNAs: the interplay of a hidden virus and host interaction. Protein Cell 5(5):348–356. doi:10.1007/s13238-014-0039-y

    Google Scholar 

  • Liang H, Li WH (2009) Lowly expressed human microRNA genes evolve rapidly. Mol Biol Evol 26(6):1195–1198. doi:10.1093/molbev/msp053

    Google Scholar 

  • Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930. doi:10.1093/bioinformatics/btt656

    Google Scholar 

  • Lopes Ide O, Schliep A, de Carvalho AC (2014) The discriminant power of RNA features for pre-miRNA recognition. BMC Bioinformatics 15:124. doi:10.1186/1471-2105-15-124

    Google Scholar 

  • Lu J, Shen Y, Wu Q, Kumar S, He B, Shi S, Carthew RW, Wang SM, Wu CI (2008) The birth and death of microRNA genes in Drosophila. Nat Genet 40(3):351–355. doi:10.1038/ng.73

    Google Scholar 

  • Luder CG, Stanway RR, Chaussepied M, Langsley G, Heussler VT (2009) Intracellular survival of apicomplexan parasites and host cell modification. Int J Parasitol 39(2):163–173. doi:10.1016/j.ijpara.2008.09.013

    Google Scholar 

  • Manzano-Roman R, Siles-Lucas M (2012) MicroRNAs in parasitic diseases: potential for diagnosis and targeting. Mol Biochem Parasitol 186(2):81–86. doi:10.1016/j.molbiopara.2012.10.001

    Google Scholar 

  • Martin M (2010) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628. doi:10.1038/nmeth.1226

    Google Scholar 

  • Ng KL, Mishra SK (2007) De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. Bioinformatics 23(11):1321–1330. doi:10.1093/bioinformatics/btm026

    Google Scholar 

  • Okamura K (2012) Diversity of animal small RNA pathways and their biological utility. Wiley Interdiscip Rev RNA 3(3):351–368. doi:10.1002/wrna.113

    Google Scholar 

  • Ritchie W, Gao D, Rasko JE (2012) Defining and providing robust controls for microRNA prediction. Bioinformatics 28(8):1058–1061. doi:10.1093/bioinformatics/bts114

    Google Scholar 

  • Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14(10A):1902–1910. doi:10.1101/gr.2722704

    Google Scholar 

  • Saçar MD, Allmer J (2013a) Comparison of four Ab initio MicroRNA prediction tools. In: Proceedings of the international conference on bioinformatics models, methods and algorithms. SciTePress—Science and and Technology Publications, Barcelona, Spain, pp 190–195

    Google Scholar 

  • Saçar MD, Allmer J (2013b) Current limitations for computational analysis of miRNAs in cancer. Pakistan J Clin Biomed Res 1:3–5

    Google Scholar 

  • Saçar MD, Allmer J (2013c) Data mining for microrna gene prediction: On the impact of class imbalance and feature number for microRNA gene prediction. In: 2013 8th international symposium on health informatics and bioinformatics. IEEE, Ankara, Turkey

    Google Scholar 

  • Saçar MD, Hamzeiy H, Allmer J (2013) Can MiRBase provide positive data for machine learning for the detection of MiRNA hairpins? J Integr Bioinform 10(2):215. doi:10.2390/biecoll-jib-2013-215

  • Saçar MD, Bagci C, Allmer J (2014) Computational prediction of microRNAs from Toxoplasma gondii potentially regulating the hosts’ gene expression. Genomics Proteomics Bioinformatics 12(5):228–238. doi:10.1016/j.gpb.2014.09.002

    Google Scholar 

  • Skalsky RL, Cullen BR (2010) Viruses, microRNAs, and host interactions. Annu Rev Microbiol 64:123–141. doi:10.1146/annurev.micro.112408.134243    

    Google Scholar 

  • Steffen P, Voss B, Rehmsmeier M, Reeder J, Giegerich R (2006) RNAshapes: an integrated RNA analysis package based on abstract shapes. Bioinformatics 22:500–3. doi:10.1093/bioinformatics/btk010

    Google Scholar 

  • Thain D, Tannenbaum T, Livny M (2005) Distributed computing in practice: the condor experience. Concurr Comput Pract Exp 17:2–4

    Google Scholar 

  • Thirugnanam S, Rout N, Gnanasekar M (2013) Possible role of Toxoplasma gondii in brain cancer through modulation of host microRNAs. Infect Agent Cancer 8(1):8. doi:10.1186/1750-9378-8-8

    Google Scholar 

  • van der Burgt A, Fiers MW, Nap JP, van Ham RC (2009) In silico miRNA prediction in metazoan genomes: balancing between sensitivity and specificity. BMC Genomics 10:204. doi:10.1186/1471-2164-10-204

    Google Scholar 

  • Wang J, Liu X, Jia B, Lu H, Peng S, Piao X, Hou N, Cai P, Yin J, Jiang N, Chen Q (2012) A comparative study of small RNAs in Toxoplasma gondii of distinct genotypes. Parasit Vectors 5:186. doi:10.1186/1756-3305-5-186

    Google Scholar 

  • Xiao J, Li Y, Prandovszky E, Karuppagounder SS, Talbot CC, Jr., Dawson VL, Dawson TM, Yolken RH (2014) MicroRNA-132 dysregulation in Toxoplasma gondii infection has implications for dopamine signaling pathway. Neuroscience 268:128–138. doi:10.1016/j.neuroscience.2014.03.015

    Google Scholar 

  • Xie M, Zhang S, Yu B (2015) microRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci 72 (1):87–99. doi:10.1007/s00018-014-1728-7

    Google Scholar 

  • Xu Q-S, Liang Y-Z (2001) Monte Carlo cross validation. Chemom Intell Lab Syst 56:1–11. doi:10.1016/S0169-7439(00)00122-2

    Google Scholar 

  • Xu Y, Zhou X, Zhang W (2008) MicroRNA prediction with a novel ranking algorithm based on random walks. Bioinformatics 24 (13):i50–58. doi:10.1093/bioinformatics/btn175

    Google Scholar 

  • Xue C, Li F, He T, Liu GP, Li Y, Zhang X (2005) Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinf 6:310. doi:10.1186/1471-2105-6-310

    Google Scholar 

  • Yousef M, Jung S, Showe LC, Showe MK (2008) Learning from positive examples when the negative class is undetermined–microRNA gene identification. Algorithms Mol Biol 3:2. doi:10.1186/1748-7188-3-2

    Google Scholar 

  • Yousef M, Allmer J, Khalifa W (2015) Sequence motif-based one-class classifiers can achieve comparable accuracy to two-class learners for plant microRNA detection. J Biomed Sci Eng 8:684–694. doi:10.4236/jbise.2015.810065

    Google Scholar 

  • Zeiner GM, Norman KL, Thomson JM, Hammond SM, Boothroyd JC (2010) Toxoplasma gondii infection specifically increases the levels of key host microRNAs. PLoS One 5(1):e8742. doi:10.1371/journal.pone.0008742

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific and Technological Research Council of Turkey (Grant No. 113E326) awarded to JA.

Supplementary Materials

Supplementary material is available at the following URL: http://bioinformatics.iyte.edu.tr/supplements/ncRNA2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Allmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saçar Demirci, M.D., Bağcı, C., Allmer, J. (2016). Differential Expression of Toxoplasma gondii MicroRNAs in Murine and Human Hosts. In: Leitão, A., Enguita, F. (eds) Non-coding RNAs and Inter-kingdom Communication. Springer, Cham. https://doi.org/10.1007/978-3-319-39496-1_9

Download citation

Publish with us

Policies and ethics