Skip to main content

Bioprinting for Human Respiratory and Gastrointestinal In Vitro Models

  • Protocol
  • First Online:
3D Bioprinting

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2140))

Abstract

Increasing ethical and biological concerns require a paradigm shift toward animal-free testing strategies for drug testing and hazard assessments. To this end, the application of bioprinting technology in the field of biomedicine is driving a rapid progress in tissue engineering. In particular, standardized and reproducible in vitro models produced by three-dimensional (3D) bioprinting technique represent a possible alternative to animal models, enabling in vitro studies relevant to in vivo conditions. The innovative approach of 3D bioprinting allows a spatially controlled deposition of cells and biomaterial in a layer-by-layer fashion providing a platform for engineering reproducible models. However, despite the promising and revolutionizing character of 3D bioprinting technology, standardized protocols providing detailed instructions are lacking. Here, we provide a protocol for the automatized printing of simple alveolar, bronchial, and intestine epithelial cell layers as the basis for more complex respiratory and gastrointestinal tissue models. Such systems will be useful for high-throughput toxicity screening and drug efficacy evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stern ST, McNeil SE (2008) Nanotechnology safety concerns revisited. Toxicol Sci 101:4–21. https://doi.org/10.1093/toxsci/kfm169

    Article  CAS  PubMed  Google Scholar 

  2. Hartung T, Rovida C (2009) Chemical regulators have overreached. Nature 460:1080–1081. https://doi.org/10.1038/4601080a

    Article  CAS  PubMed  Google Scholar 

  3. Shukla SJ, Huang R, Austin CP, Xia M (2010) Foundation review: the future of toxicity testing: a focus on in vitro methods using a quantitative high-throughput screening platform. Drug Discov Today 15:997–1007. https://doi.org/10.1016/j.drudis.2010.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Astashkina A, Mann B, Grainger DW (2012) A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacol Ther 134:82–106. https://doi.org/10.1016/j.pharmthera.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  5. Xia M, Huang R, Witt KL et al (2008) Compound cytotoxicity profiling using quantitative high-throughput screening. Environ Health Perspect 116:284–291. https://doi.org/10.1289/ehp.10727

    Article  CAS  PubMed  Google Scholar 

  6. OECD (2015) Test No. 439: In vitro skin irritation: reconstructed human epidermis test method. OECD Publishing, Paris

    Google Scholar 

  7. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785. https://doi.org/10.1038/nbt.2958

    Article  CAS  PubMed  Google Scholar 

  8. Wüst S, Godla ME, Müller R, Hofmann S (2014) Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater 10:630–640. https://doi.org/10.1016/J.ACTBIO.2013.10.016

    Article  PubMed  Google Scholar 

  9. Pati F, Jang J, Ha D-H et al (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935. https://doi.org/10.1038/ncomms4935

    Article  CAS  PubMed  Google Scholar 

  10. Horváth L, Umehara Y, Jud C et al (2015) Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep 5:7974. https://doi.org/10.1038/srep07974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lieber M, Todaro G, Smith B et al (1976) A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer 17:62–70. https://doi.org/10.1002/ijc.2910170110

    Article  CAS  PubMed  Google Scholar 

  12. Shapiro DL, Nardone LL, Rooney SA et al (1978) Phospholipid biosynthesis and secretion by a cell line (A549) which resembles type II alveolar epithelial cells. Biochim Biophys Acta 530:197–207. https://doi.org/10.1016/0005-2760(78)90005-X

    Article  CAS  PubMed  Google Scholar 

  13. Foster KA, Oster CG, Mayer MM et al (1998) Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res 243:359–366. https://doi.org/10.1006/EXCR.1998.4172

    Article  CAS  PubMed  Google Scholar 

  14. Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85:743–750. https://doi.org/10.1007/s00204-010-0545-5

    Article  CAS  PubMed  Google Scholar 

  15. Forbes B, Ehrhardt C (2005) Human respiratory epithelial cell culture for drug delivery applications. Eur J Pharm Biopharm 60:193–205. https://doi.org/10.1016/J.EJPB.2005.02.010

    Article  CAS  PubMed  Google Scholar 

  16. Lehmann A, Brandenberger C, Blank F et al (2010) A 3D model of the human epithelial airway barrier. In: Maguire D, Novik E (eds) Methods in bioengineering: Alternative technologies to animal testing. Artech House, London, pp S35–S36

    Google Scholar 

  17. Wan H, Winton HL, Soeller C, et al (2000) Tight junction properties of the immortalized human bronchial epithelial cell lines Calu-3 and 16HBE14o-. Eur Respir J 15:1058–1068

    Google Scholar 

  18. Cozens AL, Yezzi MJ, Kunzelmann K et al (1994) CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol 10:38–47. https://doi.org/10.1165/ajrcmb.10.1.7507342

    Article  CAS  PubMed  Google Scholar 

  19. Hidalgo IJ, Raub TJ, Borchardt RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749

    Article  CAS  PubMed  Google Scholar 

  20. Sambuy Y, De Angelis I, Ranaldi G et al (2005) The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol 21:1–26. https://doi.org/10.1007/s10565-005-0085-6

    Article  CAS  PubMed  Google Scholar 

  21. Artursson P, Karlsson J (1991) Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun 175:880–885. https://doi.org/10.1016/0006-291X(91)91647-U

    Article  CAS  PubMed  Google Scholar 

  22. Fratzl P (2008) Collagen: structure and mechanics, an introduction. In: Collagen. Springer US, Boston, MA, pp 1–13

    Chapter  Google Scholar 

  23. Legrand C, Bour JM, Jacob C et al (1992) Lactate dehydrogenase (LDH) activity of the number of dead cells in the medium of cultured eukaryotic cells as marker. J Biotechnol 25:231–243. https://doi.org/10.1016/0168-1656(92)90158-6

    Article  CAS  PubMed  Google Scholar 

  24. Balda MS, Whitney JA, Flores C et al (1996) Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol 134:1031–1049. https://doi.org/10.1083/JCB.134.4.1031

    Article  CAS  PubMed  Google Scholar 

  25. Velegol D, Lanni F (2001) Cell traction forces on soft biomaterials. I. Microrheology of type I collagen gels. Biophys J 81:1786–1792. https://doi.org/10.1016/S0006-3495(01)75829-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Williams BR, Gelman RA, Poppke DC, Piez KA (1978) Collagen fibril formation. Optimal in vitro conditions and preliminary kinetic results. J Biol Chem 253:6578–6585

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation (grant number CRSII5_171037), the Run4Science grant, and the Adolphe Merkle Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Rothen-Rutishauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Estermann, M., Bisig, C., Septiadi, D., Petri-Fink, A., Rothen-Rutishauser, B. (2020). Bioprinting for Human Respiratory and Gastrointestinal In Vitro Models. In: Crook, J.M. (eds) 3D Bioprinting. Methods in Molecular Biology, vol 2140. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0520-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0520-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0519-6

  • Online ISBN: 978-1-0716-0520-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics