Skip to main content

Choice of the Promoter for Tissue and Developmental Stage-Specific Gene Expression

  • Protocol
  • First Online:
Biolistic DNA Delivery in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2124))

Abstract

Transgenic technologies belong to important tools of reverse genetics and biotechnology in plants. Targeted genetic modifications can reveal functions of genes of interest, change metabolic and regulatory pathways, or result in accumulation of valuable proteins or metabolites. However, to be efficient in targeted genetic modification, the chimeric gene construct should be designed properly. In particular, the promoters used to control transgene expression need to be carefully chosen. Most promoters in widely used vectors belong to strong and constitutively expressed variants. However, in many cases transgene expression has to be restricted to certain tissue, stage of development, or response to some internal or external stimuli. In turn, a large variety of tissue-specific promoters have been studied and information on their characteristics may be recovered from the literature. An appropriate promoter may be selected and used in genetic construct to optimize the transgene transcription pattern. We have previously designed the TGP database (TransGene Promoters, http://wwwmgs.bionet.nsc.ru/mgs/dbases/tgp/home.html) collecting information from the publications in this field. Here we review the wide range of noncanonical tissue-specific and developmentally regulated promoters that might be used for transgene expression control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smirnova OG, Ibragimova SS, Kochetov AV (2012) Simple database to select promoters for plant transgenesis. Transgenic Res 21:429–437

    Article  CAS  PubMed  Google Scholar 

  2. Smirnova OG, Rasskazov DA, Afonnikov DA, Kochetov AV (2012) TGP—the database on promoters for plant transgenesis. Mat Biolog Bioinform 7:444–460. [Article in Russian]

    Article  CAS  Google Scholar 

  3. Peremarti A, Twyman RM, Gómez-Galera S, Naqvi S, Farré G, Sabalza M, Miralpeix B, Dashevskaya S, Yuan D, Ramessar K, Christou P, Zhu C, Bassie L, Capell T (2010) Promoter diversity in multigene transformation. Plant Mol Biol 73:363–378

    Article  CAS  PubMed  Google Scholar 

  4. Dutt M, Dhekney SA, Soriano L, Kandel R, Grosser JW (2014) Temporal and spatial control of gene expression in horticultural crops. Hortic Res 1:14047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Mithra SVA, Kulkarni K, Srinivasan R (2017) Plant promoters: characterization and applications in transgenic technology. In: Abdin M, Kiran U, Kamaluddin AA (eds) Plant biotechnology: principles and applications. Springer, Singapore

    Google Scholar 

  6. Nuccio ML (2018) A brief history of promoter development for use in transgenic maize applications. Methods Mol Biol 1676:61–93

    Article  CAS  PubMed  Google Scholar 

  7. DellaPenna D, Alexander DC, Bennett AB (1986) Molecular cloning of tomato fruit polygalacturonase: analysis of polygalacturonase mRNA levels during ripening. Proc Natl Acad Sci U S A 83:6420–6424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang ZY, MacRae EA, Wright MA, Bolitho KM, Ross GS, Atkinson RG (2000) Polygalacturonase gene expression in kiwifruit: relationship to fruit softening and ethylene production. Plant Mol Biol 42:317–328

    Article  CAS  PubMed  Google Scholar 

  9. Lin E, Burns DJ, Gardner RC (1993) Fruit developmental regulation of the kiwifruit actinidin promoter is conserved in transgenic petunia plants. Plant Mol Biol 23:489–499

    Article  CAS  PubMed  Google Scholar 

  10. Wang XL, Peng XX (2001) Cloning of promoter of banana fruit ripening-related ACO1 and primary study on its function. Sheng Wu Gong Cheng Xue Bao 17:428–431. [Article in Chinese]

    PubMed  Google Scholar 

  11. Wang XL, Peng XX (2001) Cloning of promoter of banana fruit-specific ACC synthase gene and primary study on its function. Sheng Wu Gong Cheng Xue Bao 17:293–296. [Article in Chinese]

    CAS  PubMed  Google Scholar 

  12. Moon H, Callahan AM (2004) Developmental regulation of peach ACC oxidase promoter-GUS fusions in transgenic tomato fruits. J Exp Bot 55:1519–1528

    Article  CAS  PubMed  Google Scholar 

  13. Trainotti L, Spolaore S, Pavanello A, Baldan B, Casadoro G (1999) A novel E-type endo-b-1,4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits. Plant Mol Biol 40:323–332

    Article  CAS  PubMed  Google Scholar 

  14. Spolaore S, Trainotti L, Pavanello A, Casadoro G (2003) Isolation and promoter analysis of two genes encoding different endo-beta-1,4-glucanases in the non-climacteric strawberry. J Exp Bot 54:271–277

    Article  CAS  PubMed  Google Scholar 

  15. Kim IJ, Chung WI (1998) Molecular characterization of a cytosolic ascorbate peroxidase in strawberry fruit. Plant Sci 133:69–77

    Article  CAS  Google Scholar 

  16. Park JI, Lee YK, Chung WI, Lee I-H, Choi J-H, Lee W-M, Ezura H, Lee S-P, Kim I-J (2006) Modification of sugar composition in strawberry fruit by antisense suppression of an ADP glucose pyrophosphorylase. Mol Breed 17:269–279

    Article  CAS  Google Scholar 

  17. Lee JK, Kim IJ (2011) Modulation of fruit softening by antisense suppression of endo-b-1,4-glucanase in strawberry. Mol Breed 27:375–383

    Article  CAS  Google Scholar 

  18. Agius F, Amaya I, Botella MA, Valpuesta V (2005) Functional analysis of homologous and heterologous promoters in strawberry fruits using transient expression. J Exp Bot 56:37–46

    CAS  PubMed  Google Scholar 

  19. Atkinson RG, Bolitho KM, Wright MA, Iturriagagoitia-Bueno T, Reid SJ, Ross GS (1998) Apple ACC-oxidase and polygalacturonase: ripening-specific gene expression and promoter analysis in transgenic tomato. Plant Mol Biol 38:449–460

    Article  CAS  PubMed  Google Scholar 

  20. Saed Taha R, Ismail I, Zainal Z, Abdullah SN (2012) The stearoyl-acyl-carrier-protein desaturase promoter (Des) from oil palm confers fruit-specific GUS expression in transgenic tomato. J Plant Physiol 169:1290–1300

    Article  CAS  PubMed  Google Scholar 

  21. Endo T, Shimada T, Fujii H, Moriguchi T, Omura M (2007) Promoter analysis of a type 3 metallothionein-like gene abundant in Satsuma mandarin (Citrus unshiu Marc.) fruit. Sci Hortic 112:207–214

    Article  CAS  Google Scholar 

  22. Wu HY, Liu JM, Yang XT, Zhu ZJ, Shou SY (2003) Primary targeting of functional regions involved in transcriptional regulation on watermelon fruit-specific promoter WSP. Sheng Wu Gong Cheng Xue Bao 19:227–230. [Article in Chinese]

    CAS  PubMed  Google Scholar 

  23. Wu HY, Liu JM, Zhu ZJ, Yang XT, Chen DM (2003) Transformation of wml1 5′ promoter region into tomato plants and studies on its transcriptional regulation role. Sheng Wu Gong Cheng Xue Bao 36:226–232. [Article in Chinese]

    CAS  Google Scholar 

  24. Yin T, Wu H, Zhang S, Lu H, Zhang L, Xu Y, Chen D, Liu J (2009) Two negative cis-regulatory regions involved in fruit-specific promoter activity from watermelon (Citrullus vulgaris S.). J Exp Bot 60:169–185

    Article  CAS  PubMed  Google Scholar 

  25. Yin T, Lu HY, Zhang SL, Liu JM, Chen DM (2009) Fruit-specific expression of sweet protein Brazzein in transgenic tomato plants. Yi Chuan 31:663–667. [Article in Chinese]

    Article  CAS  PubMed  Google Scholar 

  26. Unni SC, Vivek PJ, Maju TT, Varghese RT, Soniya EV (2012) Molecular cloning and characterization of fruit specific promoter from Cucumis sativus L. Am J Mol Biol 2:132–139

    Article  CAS  Google Scholar 

  27. Wang R, Chen M, Liao F, Jiang F, Ma B, Zhang Y, Li M (2010) Cloning of the gene encoding cucumber lumazine synthase and an analysis of its promoter activity in cucumber. Can J Plant Sci 90:809–818

    Article  CAS  Google Scholar 

  28. Yamagata H, Yonesu K, Hirata A, Aizono Y (2002) TGTCACA motif is a novel cis-regulatory enhancer element involved in fruit-specific expression of the cucumisin gene. J Biol Chem 277:11582–11590

    Article  CAS  PubMed  Google Scholar 

  29. Nguyen AL (2008) Transcriptional regulation of FRUITFULL: a MADS-box gene involved in Arabidopsis fruit development. Dissertation. University of California, Oakland, CA

    Google Scholar 

  30. Borghi M, Xie DY (2016) Tissue-specific production of limonene in Camelina sativa with the Arabidopsis promoters of genes BANYULS and FRUITFULL. Planta 243:549–561

    Article  CAS  PubMed  Google Scholar 

  31. Dalal M, Chinnusamy V, Bansal KC (2010) Isolation and functional characterization of lycopene beta-cyclase (CYC-B) promoter from Solanum habrochaites. BMC Plant Biol 10:61. https://doi.org/10.1186/1471-2229-10-61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Langenkamper G, Manac'h N, Broin M, Cuiné S, Becuwe N, Kuntz M, Rey P (2001) Accumulation of plastid lipid-associated proteins (fibrillin/CDSP34) upon oxidative stress, ageing and biotic stress in Solanaceae and in response to drought in other species. J Exp Bot 52:1545–2554

    Article  CAS  PubMed  Google Scholar 

  33. Kuntz M, Chen HC, Simkin AJ, Römer S, Shipton C, Drake R, Schuch W, Bramley P (1998) Upregulation of two ripening-related genes from a non-climacteric plant (pepper) in transgenic climacteric plant (tomato). Plant J 13:351–361

    Article  CAS  Google Scholar 

  34. Tian SL, Li Z, Li L, Shah SNM, Gong ZH (2017) Analysis of tandem repeat units of the promoter of capsanthin/capsorubin synthase (Ccs) gene in pepper fruit. Physiol Mol Biol Plants 23:685–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim SH, Lee JR, Kim SR (2006) Characterization of an apple anthocyanidin synthase gene in transgenic tobacco plants. J Plant Biol 49:326–330

    Article  CAS  Google Scholar 

  36. Corona V, Aracri B, Kosturkova G, Bartley GE, Pitto L, Giorgetti L, Scolnik PA, Giuliano G (1996) Regulation of a carotenoid biosynthesis gene promoter during plant development. Plant J 9:505–512

    Article  CAS  PubMed  Google Scholar 

  37. Mann V, Harker M, Pecker I, Hirschberg J (2000) Metabolic engineering of astaxanthin production in tobacco flowers. Nat Biotechnol 18:888–892

    Article  CAS  PubMed  Google Scholar 

  38. Gomez MD, Beltran JP, Canas LA (2004) The pea END1 promoter drives anther-specific gene expression in different plant species. Planta 219:967–981

    Article  CAS  PubMed  Google Scholar 

  39. Piston F, Garcia C, de la Vina G, Beltran JP, Cañas LA, Barro F (2008) The pea PsEND1 promoter drives the expression of GUS in transgenic wheat at the binucleate microspore stage and during pollen tube development. Mol Breed 21:401–405

    Article  CAS  Google Scholar 

  40. Roque E, Gomez MD, Ellul P, Wallbraun M, Madueño F, Beltrán JP, Cañas LA (2007) The PsEND1 promoter: a novel tool to produce genetically engineered male-sterile plants by early anther ablation. Plant Cell Rep 26:313–325

    Article  CAS  PubMed  Google Scholar 

  41. Garcia-Sogo B, Pineda B, Castelblanque L, Antón T, Medina M, Roque E, Torresi C, Beltrán JP, Moreno V, Cañas LA (2010) Efficient transformation of Kalanchoe blossfeldiana and production of male-sterile plants by engineered anther ablation. Plant Cell Rep 29:61–77

    Article  CAS  PubMed  Google Scholar 

  42. Garcia-Sogo B, Pineda B, Roque E, Antón T, Atarés A, Borja M, Beltrán JP, Moreno V, Cañas LA (2012) Production of engineered long-life and male sterile Pelargonium plants. BMC Plant Biol 12:156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rogers HJ, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale DM, Twell D (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol 45:577–585

    Article  CAS  PubMed  Google Scholar 

  44. Peng J, Qi X, Chen X, Li N, Yu J (2017) ZmDof30 negatively regulates the promoter activity of the pollen-specific gene Zm908. Front Plant Sci 8:685. https://doi.org/10.3389/fpls.2017.00685

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hsu SW, Liu MC, Zen KC, Wang CS (2014) Identification of the tapetum/microspore-specific promoter of the pathogenesis-related 10 gene and its regulation in the anther of Lilium longiflorum. Plant Sci 215-216:124–133

    Article  CAS  PubMed  Google Scholar 

  46. Singh M, Bhalla PL, Xu H, Singh MB (2003) Isolation and characterization of a flowering plant male gametic cell-specific promoter. FEBS Lett 542:47–52

    Article  CAS  PubMed  Google Scholar 

  47. Luo H, Lee JY, Hu Q, Nelson-Vasilchik K, Eitas TK, Lickwar C, Kausch AP, Chandlee JM, Hodges TK (2006) RTS, a rice anther-specific gene is required for male fertility and its promoter sequence directs tissue-specific gene expression in different plant species. Plant Mol Biol 62:397–408

    Article  CAS  PubMed  Google Scholar 

  48. Liu MC, Yang CS, Yeh FL, Wei CH, Jane WN, Chung MC, Wang CS (2014) A novel lily anther-specific gene encodes adhesin-like proteins associated with exine formation during anther development. J Exp Bot 65:2023–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiang SY, Vanitha J, Bai Y, Ramachandran S (2014) Identification and molecular characterization of tissue-preferred rice genes and their upstream regularly sequences on a genome-wide level. BMC Plant Biol 14:331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Rao GS, Deveshwar P, Sharma M, Kapoor S, Rao KV (2018) Evolvement of transgenic male-sterility and fertility-restoration system in rice for production of hybrid varieties. Plant Mol Biol 96:35–51

    Article  CAS  PubMed  Google Scholar 

  51. Chopin F, Orsel M, Dorbe MF, Chardon F, Truong HN, Miller AJ, Krapp A, Daniel-Vedele F (2007) The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell 19:1590–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nesi N, Lucas MO, Auger B, Baron C, Lécureuil A, Guerche P, Kronenberger J, Lepiniec L, Debeaujon I, Renard M (2009) The promoter of the Arabidopsis thaliana BAN gene is active in proanthocyanidin-accumulating cells of the Brassica napus seed coat. Plant Cell Rep 28:601–617

    Article  CAS  PubMed  Google Scholar 

  53. Colombo L, Franken J, Koetje E, van Went J, Dons HJ, Angenent GC, van Tunen AJ (1995) The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7:1859–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Colombo L, Franken J, Van der Krol AR, Wittich PE, Dons HJ, Angenent GC (1997) Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9:703–715

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Schaart JG, Salentijn EMJ, Krens FA (2002) Tissue-specific expression of the β-glucuronidase reporter gene in transgenic strawberry (Fragaria × ananassa) plants. Plant Cell Rep 21:313–319

    Article  CAS  Google Scholar 

  56. Qu LQ, Takaiwa F (2004) Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotechnol J 2:113–125

    Article  CAS  Google Scholar 

  57. Kuwano M, Mimura T, Takaiwa F, Yoshida KT (2009) Generation of stable ‘low phytic acid’ transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter. Plant Biotechnol J 7:96–105

    Article  PubMed  CAS  Google Scholar 

  58. Oszvald M, Gardonyi M, Tamas C, Takacs I, Jenes B, Tamas L (2008) Development and characterization of a chimaeric tissue-specific promoter in wheat and rice endosperm. In Vitro Cell Dev Biol Plant 44:1–7

    Article  CAS  Google Scholar 

  59. Tamas C, Kisgyorgy BN, Rakszegi M et al (2009) Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. Plant Cell Rep 28:1085–1094

    Article  CAS  PubMed  Google Scholar 

  60. Oszvald M, Kang TJ, Tomoskozi S, Jenes B, Kim TG, Cha YS, Tamas L, Yang MS (2008) Expression of cholera toxin B subunit in transgenic rice endosperm. Mol Biotechnol 40:261–268

    Article  CAS  PubMed  Google Scholar 

  61. Schuenmann PHD, Coia G, Waterhouse PM (2002) Biopharming the SimpliRED HIV diagnostic reagent in barley, potato and tobacco. Mol Breed 9:113–121

    Article  CAS  Google Scholar 

  62. Wang K, Zhang X, Zhao Y, Chen F, Xia G (2013) Structure, variation and expression analysis of glutenin gene promoters from Triticum aestivum cultivar Chinese Spring shows the distal region of promoter 1Bx7 is key regulatory sequence. Gene 527:484–490

    Article  CAS  PubMed  Google Scholar 

  63. Lamacchia C, Shewry PR, Di Fonzo N, Forsyth JL, Harris N, Lazzeri PA, Napier JA, Halford NG, Barcelo P (2001) Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed. J Exp Bot 52:243–250

    Article  CAS  PubMed  Google Scholar 

  64. Tosi P, D'Ovidio R, Napier JA, Bekes F, Shewry PR (2004) Expression of epitope-tagged LMW glutenin subunits in the starchy endosperm of transgenic wheat and their incorporation into glutenin polymers. Theor Appl Genet 108:468–476

    Article  CAS  PubMed  Google Scholar 

  65. Cong L, Wang C, Chen L, Liu H, Yang G, He G (2009) Expression of phytoene synthase1 and carotene desaturase crtI genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.). J Agric Food Chem 57:8652–8660

    Article  CAS  PubMed  Google Scholar 

  66. Halford NG, Forde J, Shewry PR, Kreis M (1989) Functional analysis of the upstream regions of a silent and an expressed member of a family of wheat seed protein genes in transgenic tobacco. Plant Sci 62:207–216

    Article  CAS  Google Scholar 

  67. He GY, Rooke L, Steele S, Békés F, Gras P, Tatham AS, Fido R, Barcelo P, Shewry PR, Lazzeri PA (1999) Transformation of pasta wheat (Triticum turgidum L. var. durum) with high molecular-weight glutenin subunit genes and modification of dough functionality. Mol Breed 5:377–386

    Article  CAS  Google Scholar 

  68. Harholt J, Bach IC, Lind-Bouquin S, Nunan KJ, Madrid SM, Brinch-Pedersen H, Holm PB, Scheller HV (2010) Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm. Plant Biotechnol J 8:351–362

    Article  CAS  PubMed  Google Scholar 

  69. Hagan ND, Upadhyaya N, Tabe LM, Higgins TJ (2003) The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign, sulfur-rich protein. Plant J 34:1–11

    Article  CAS  PubMed  Google Scholar 

  70. Marcotte WRJ, Russell SH, Quatrano SR (1989) Abscisic acid-responsive sequence from the Em gene of wheat. Plant Cell 1:969–976

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Furtado A, Henry RJ (2005) The wheat Em promoter drives reporter gene expression in embryo and aleurone tissue of transgenic barley and rice. Plant Biotechnol J 3:421–434

    Article  CAS  PubMed  Google Scholar 

  72. Furtado A, Henry RJ, Pellegrineschi A (2009) Analysis of promoters in transgenic barley and wheat. Plant Biotechnol J 7:240–253

    Article  CAS  PubMed  Google Scholar 

  73. Song F, Cui CJ, Chen L, Sun YL, Wang FF, Hussain J, Li Y, Wang C, Wang C, Chen MJ, Wang YS, Yang GX, He GY (2012) Isolation and characterization of an endosperm-specific promoter from wheat (Triticum aestivum L.). Z Naturforsch C 67:611–619

    Article  CAS  PubMed  Google Scholar 

  74. Kovalchuk N, Smith J, Pallotta M, Singh R, Ismagul A, Eliby S, Bazanova N, Milligan AS, Hrmova M, Langridge P, Lopato S (2009) Characterization of the wheat endosperm transfer cell-specific protein TaPR60. Plant Mol Biol 71:81–98

    Article  CAS  PubMed  Google Scholar 

  75. Kovalchuk N, Smith J, Bazanova N, Pyvovarenko T, Singh R, Shirley N, Ismagul A, Johnson A, Milligan AS, Hrmova M, Langridge P, Lopato S (2012) Characterization of the wheat gene encoding a grain-specific lipid transfer protein TdPR61, and promoter activity in wheat, barley and rice. J Exp Bot 63:2025–2040

    Article  CAS  PubMed  Google Scholar 

  76. de Pater S, Pham K, Klitsie I, Kijne J (1996) The 22 bp W1 element in the pea lectin promoter is necessary and, as a multimer, sufficient for high gene expression in tobacco seeds. Plant Mol Biol 32:515–523

    Article  PubMed  Google Scholar 

  77. Naoumkina M, Dixon RA (2011) Characterization of the mannan synthase promoter from guar (Cyamopsis tetragonoloba). Plant Cell Rep 30:997–1006

    Article  CAS  PubMed  Google Scholar 

  78. Song Z, Mietkiewska E, Weselake RJ (2017) The linin promoter is highly effective in enhancing punicic acid production in Arabidopsis. Plant Cell Rep 36:447–457

    Article  CAS  PubMed  Google Scholar 

  79. Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Omura M (2008) Isolation and characterization of a Citrus FT/TFL1 homologue (CuMFT1), which shows quantitatively preferential expression in Citrus seeds. J Jpn Soc Hortic Sci 77:38–46

    Article  CAS  Google Scholar 

  80. Girin T, Lejay L, Wirth J, Widiez T, Palenchar PM, Nazoa P, Touraine B, Gojon A, Lepetit M (2007) Identification of a 150 bp cis-acting element of the AtNRT2.1 promoter involved in the regulation of gene expression by the N and C status of the plant. Plant Cell Environ 30:1366–1380

    Article  CAS  PubMed  Google Scholar 

  81. Kong K, Makabe S, Ntui VO, Khan RS, Nakamura I (2014) Synthetic chitinase gene driven by root-specific LjNRT2 and AtNRT2.1 promoters confers resistance to Fusarium oxysporum in transgenic tobacco and tomato. Plant Biotechnol Rep 8:151–159

    Article  Google Scholar 

  82. Xu Y, Buchholz WG, DeRose RT, Hall TC (1995) Characterization of a rice gene family encoding root-specific proteins. Plant Mol Biol 27:237–248

    Article  CAS  PubMed  Google Scholar 

  83. Gao S, Fang J, Xu F, Wang W, Sun X, Chu J, Cai B, Feng Y, Chu C (2014) Cytokinin oxidase/dehydrogenase 4 integrates cytokinin and auxin signaling to control rice crown root formation. Plant Physiol 165:1035–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Redillas MC, Jeong JS, Kim YS, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim JK (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10:792–805

    Article  CAS  PubMed  Google Scholar 

  86. Jeong JS, Kim YS, Redillas MC, Jang G, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim JK (2013) OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol J 11:101–114

    Article  CAS  PubMed  Google Scholar 

  87. Chung PJ, Jung H, Choi YD, Kim JK (2018) Genome-wide analyses of direct target genes of four rice NAC-domain transcription factors involved in drought tolerance. BMC Genomics 19:40. https://doi.org/10.1186/s12864-017-4367-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Deng F, Yamaji N, Ma JF, Lee SK, Jeon JS, Martinoia E, Lee Y, Song WY (2018) Engineering rice with lower grain arsenic. Plant Biotechnol J 16:1691–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yamamoto YT, Taylor CG, Acedo GN, Cheng CL, Conkling MA (1991) Characterization of cis-acting sequences regulating root-specific gene expression in tobacco. Plant Cell 3:371–382

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Barone P, Rosellini D, Lafayette P, Bouton J, Veronesi F, Parrott W (2008) Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa. Plant Cell Rep 27:893–901

    Article  CAS  PubMed  Google Scholar 

  91. Chan YL, Prasad V, Sanjaya CKH, Liu PC, Chan MT, Cheng CP (2005) Transgenic tomato plants expressing an Arabidopsis thionin (Thi2.1) driven by fruit-inactive promoter battle against phytopathogenic attack. Planta 221:386–393

    Article  CAS  PubMed  Google Scholar 

  92. Radi A, Dina P, Guy A (2006) Expression of sarcotoxin IA gene via a root-specific tob promoter enhanced host resistance against parasitic weeds in tomato plants. Plant Cell Rep 25:297–303

    Article  CAS  PubMed  Google Scholar 

  93. Vaughan SP, James DJ, Lindsey K, Massiah AJ (2006) Characterization of FaRB7, a near root-specific gene from strawberry (Fragaria × ananassa Duch.) and promoter activity analysis in homologous and heterologous hosts. J Exp Bot 57:3901–3910

    Article  CAS  PubMed  Google Scholar 

  94. Liu JJ, Ekramoddoullah AK (2003) Root-specific expression of a western white pine PR10 gene is mediated by different promoter regions in transgenic tobacco. Plant Mol Biol 52:103–120

    Article  CAS  PubMed  Google Scholar 

  95. Xu X, Guo S, Chen K, Song H, Liu J, Guo L, Qian Q, Wang H (2010) A 796 bp PsPR10 gene promoter fragment increased root-specific expression of the GUS reporter gene under the abiotic stresses and signal molecules in tobacco. Biotechnol Lett 32:1533–1539

    Article  CAS  PubMed  Google Scholar 

  96. Yu ZH, Han YN, Xiao XG (2015) A PPO promoter from betalain-producing red Swiss chard, directs petiole- and root-preferential expression of foreign gene in anthocyanins-producing plants. Int J Mol Sci 16:27032–27043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen L, Jiang B, Wu C, Sun S, Hou W, Han T (2014) GmPRP2 promoter drives root-preferential expression in transgenic Arabidopsis and soybean hairy roots. BMC Plant Biol 14:245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Suzuki K, Yun DJ, Chen XY, Yamada Y, Hashimoto T (1999) An Atropa belladonna hyoscyamine 6beta-hydroxylase gene is differentially expressed in the root pericycle and anthers. Plant Mol Biol 40:141–152

    Article  CAS  PubMed  Google Scholar 

  99. Suzuki K, Yamada Y, Hashimoto T (1999) Expression of Atropa belladonna putrescine N-methyltransferase gene in root pericycle. Plant Cell Physiol 40:289–297

    Article  CAS  PubMed  Google Scholar 

  100. Nakajima K, Oshita Y, Kaya M, Yamada Y, Hashimoto T (1999) Structures and expression patterns of two tropinone reductase genes from Hyoscyamus niger. Biosci Biotechnol Biochem 63:1756–1764

    Article  CAS  PubMed  Google Scholar 

  101. Suzuki H, Fowler TJ, Tierney ML (1993) Deletion analysis and localization of SbPRP1, a soybean cell wall protein gene, in roots of transgenic tobacco and cowpea. Plant Mol Biol 21:109–119

    Article  CAS  PubMed  Google Scholar 

  102. Koehorst-van Putten HJ, Wolters AM, Pereira-Bertram IM, van den Berg HH, van der Krol AR, Visser RG (2012) Cloning and characterization of a tuberous root-specific promoter from cassava (Manihot esculenta Crantz). Planta 236:1955–1965

    Article  CAS  PubMed  Google Scholar 

  103. Salehuzzaman SNIM, Jacobsen E, Visser RGF (1993) Isolation and characterization of a cDNA encoding granule-bound starch synthase in cassava (Manihot esculenta Crantz) and its antisense expression in potato. Plant Mol Biol 23:947–962

    Article  CAS  PubMed  Google Scholar 

  104. Jones MO, Manning K, Andrews J, Wright C, Taylor IB, Thompson AJ (2008) The promoter from SlREO, a highly-expressed, root-specific Solanum lycopersicum gene, directs expression to cortex of mature roots. Funct Plant Biol 35:1224–1233

    Article  CAS  PubMed  Google Scholar 

  105. Onyango SO, Roderick H, Tripathi JN, Collins R, Atkinson HJ, Oduor RO, Tripathi L (2016) The ZmRCP-1 promoter of maize provides root tip specific expression of transgenes in plantain. J Biol Res (Thessalon) 23:4

    Article  CAS  Google Scholar 

  106. Kakrana A, Kumar A, Satheesh V, Abdin MZ, Subramaniam K, Bhattacharya RC, Srinivasan R, Sirohi A, Jain PK (2017) Identification, validation and utilization of novel nematode-responsive root-specific promoters in Arabidopsis for inducing host-delivered RNAi mediated root-knot nematode resistance. Front Plant Sci 8:2049

    Article  PubMed  PubMed Central  Google Scholar 

  107. Park SH, Jeong JS, Han EH, Redilas MCFR, Bang SW, Jung H, Kim YS, Kim J-K (2013) Characterization of the root-predominant gene promoter HPX1 in transgenic rice plants. Plant Biotechnol Rep 7:339–344

    Article  Google Scholar 

  108. Noh YS, Amasino RM (1999) Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol Biol 41:181–194

    Article  CAS  PubMed  Google Scholar 

  109. Zimmermann P, Heinlein C, Orendi G, Zentgraf U (2006) Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ 29:1049–1060

    Article  CAS  PubMed  Google Scholar 

  110. Huynh le N, Vantoai T, Streeter J, Banowetz G (2005) Regulation of flooding tolerance of SAG12:ipt Arabidopsis plants by cytokinin. J Exp Bot 56:1397–1407

    Article  PubMed  CAS  Google Scholar 

  111. Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  CAS  PubMed  Google Scholar 

  112. Ori N, Juarez MT, Jackson D, Yamaguchi J, Banowetz GM, Hake S (1999) Leaf senescence is delayed in tobacco plants expressing the maize homeobox gene knotted1 under the control of a senescence-activated promoter. Plant Cell 11:1073–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jordi W, Schapendonk A, Davelaar E, Stoopen GM, Pot CS, De Visser R, Van Rhijn JA, Gan S, Amasino RM (2000) Increased cytokinin levels in transgenic PSAG12-IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning. Plant Cell Environ 23:279–289

    Article  CAS  Google Scholar 

  114. Cowan AK, Freeman M, Bjorkman PO, Nicander B, Sitbon F, Tillberg E (2005) Effects of senescence-induced alteration in cytokinin metabolism on source-sink relationships and ontogenic and stress-induced transitions in tobacco. Planta 221:801–814

    Article  CAS  PubMed  Google Scholar 

  115. Fu Y, Ding Y, Liu X, Sun C, Cao S, Wang D, He S, Wang X, Li L, Tian W (1998) Rice transformation with a senescence-inhibition chimeric gene. Chin Sci Bull 43:1810–1815

    Article  CAS  Google Scholar 

  116. McCabe MS, Garratt LC, Schepers F, Jordi WJ, Stoopen GM, Davelaar E, van Rhijn JH, Power JB, Davey MR (2001) Effects of P(SAG12)-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol 127:505–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chang H, Jones ML, Banowetz GM, Clark DG (2003) Overproduction of cytokinins in petunia flowers transformed with P(SAG12)-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiol 132:2174–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Swartzberg D, Kirshner B, Rav-David D, Elad Y, Granot D (2008) Botrytis cinerea induces senescence and is inhibited by autoregulated expression of the IPT gene. Eur J Plant Pathol 120:289–297

    Article  CAS  Google Scholar 

  119. Swartzberg D, Hanael R, Granot D (2011) Relationship between hexokinase and cytokinin in the regulation of leaf senescence and seed germination. Plant Biol (Stuttg) 13:439–444

    Article  CAS  Google Scholar 

  120. Sykorova B, Kuresova G, Daskalova S, Trcková M, Hoyerová K, Raimanová I, Motyka V, Trávnícková A, Elliott MC, Kamínek M (2008) Senescence-induced ectopic expression of the A. tumefaciens ipt gene in wheat delays leaf senescence, increases cytokinin content, nitrate influx, and nitrate reductase activity, but does not affect grain yield. J Exp Bot 59:377–387

    Article  CAS  PubMed  Google Scholar 

  121. Xu Y, Gianfagna T, Huang B (2010) Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species. J Exp Bot 61:3273–3289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Merewitz EB, Gianfagna T, Huang B (2011) Photosynthesis, water use, and root viability under water stress as affected by expression of SAG12-ipt controlling cytokinin synthesis in Agrostis stolonifera. J Exp Bot 62:383–395

    Article  CAS  PubMed  Google Scholar 

  123. Zhang P, Wang WQ, Zhang GL, Kaminek M, Dobrev P, Xu J, Gruissem W (2010) Senescence-inducible expression of isopentenyl transferase extends leaf life, increases drought stress resistance and alters cytokinin metabolism in cassava. J Integr Plant Biol 52:653–669

    CAS  PubMed  Google Scholar 

  124. Lai QX, Bao ZY, Zhu ZJ, Qian QQ, Mao BZ (2007) Effects of osmotic stress on antioxidant enzymes activities in leaf discs of PSAG12-IPT modified Gerbera. J Zhejiang Univ Sci B 8:458–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xu X, Jiang CZ, Donnelly L, Reid MS (2007) Functional analysis of a RING domain ankyrin repeat protein that is highly expressed during flower senescence. J Exp Bot 58:3623–3630

    Article  CAS  PubMed  Google Scholar 

  126. Noh YS, Amasino RM (1999) Regulation of developmental senescence is conserved between Arabidopsis and Brassica napus. Plant Mol Biol 41:195–206

    Article  CAS  PubMed  Google Scholar 

  127. Butt A, Mousley C, Morris K, Beynon J, Can C, Holub E, Greenberg JT, Buchanan-Wollaston V (1998) Differential expression of a senescence-enhanced metallothionein gene in Arabidopsis in response to isolates of Peronospora parasitica and Pseudomonas syringae. Plant J 16:209–221

    Article  CAS  PubMed  Google Scholar 

  128. Sato Y, Morita R, Nishimura M, Yamaguchi H, Kusaba M (2007) Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc Natl Acad Sci U S A 104:14169–14174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Furukawa K, Ichikawa S, Nigorikawa M, Sonoki T, Ito Y (2014) Enhanced production of reducing sugars from transgenic rice expressing exo-glucanase under the control of a senescence-inducible promoter. Transgenic Res 23:531–537

    Article  CAS  PubMed  Google Scholar 

  130. Li Q, Robson PR, Bettany AJ, Donnison IS, Thomas H, Scott IM (2004) Modification of senescence in ryegrass transformed with IPT under the control of a monocot senescence-enhanced promoter. Plant Cell Rep 22:816–821

    Article  CAS  PubMed  Google Scholar 

  131. Robson PR, Donnison IS, Wang K, Frame B, Pegg SE, Thomas A, Thomas H (2004) Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under the control of a novel maize senescence-enhanced promoter. Plant Biotechnol J 2:101–112

    Article  CAS  PubMed  Google Scholar 

  132. Farage-Barhom S, Burd S, Sonego L, Perl-Treves R, Lers A (2008) Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes. J Exp Bot 59:3247–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rasori A, Bertolasi B, Furini A, Bonghia C, Tonuttia P, Ramina A (2003) Functional analysis of peach ACC oxidase promoters in transgenic tomato and in ripening peach fruit. Plant Sci 165:523–530

    Article  CAS  Google Scholar 

  134. Hajouj T, Michelis R, Gepstein S (2000) Cloning and characterization of a receptor-like protein kinase gene associated with senescence. Plant Physiol 124:1305–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci U S A 104:19631–19636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol J 9:747–758

    Article  CAS  PubMed  Google Scholar 

  137. Qin H, Gu Q, Zhang J, Sun L, Kuppu S, Zhang Y, Burow M, Payton P, Blumwald E, Zhang H (2011) Regulated expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant Cell Physiol 52:1904–1914

    Article  CAS  PubMed  Google Scholar 

  138. Kuppu S, Mishra N, Hu R (2013) Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PLoS One 8:e64190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Décima Oneto C, Otegui ME, Baroli I, Beznec A, Faccio P, Bossio E, Blumwald E, Lewi D (2016) Water deficit stress tolerance in maize conferred by expression of an isopentenyltransferase (IPT) gene driven by a stress- and maturation-induced promoter. J Biotechnol 220:66–77

    Article  PubMed  CAS  Google Scholar 

  140. Chen HC, Klein A, Xiang M, Backhaus RA, Kuntz M (1998) Drought- and wound-induced expression in leaves of a gene encoding a chromoplast carotenoid-associated protein. Plant J 14:317–326

    Article  Google Scholar 

  141. Enfissi EM, Fraser PD, Lois LM, Boronat A, Schuch W, Bramley PM (2005) Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol J 3:17–27

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by a budget project of the Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (project no. 0324-2019-0039-C-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga G. Smirnova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Smirnova, O.G., Kochetov, A.V. (2020). Choice of the Promoter for Tissue and Developmental Stage-Specific Gene Expression. In: Rustgi, S., Luo, H. (eds) Biolistic DNA Delivery in Plants. Methods in Molecular Biology, vol 2124. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0356-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0356-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0355-0

  • Online ISBN: 978-1-0716-0356-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics