Skip to main content

Updates on Legume Genome Sequencing

  • Protocol
  • First Online:
Legume Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2107))

Abstract

Legumes (Fabaceae) are agronomically and economically one of the most important crops. Because legumes serve as a source of food, feed, and industrial materials, many studies in the field of legume genomics, including genome sequencing, have been conducted over the last decade. Here, we update the progress in genome sequencing of legume crops, including soybean (Glycine max [L.] Merr.), mung bean (V. radiata var. radiata), adzuki bean (V. angularis var. angularis), common bean (Phaseolus vulgaris L.), pigeon pea (Cajanus cajan), chickpea (Cicer arietinum), and peanut (Arachis hypogaea). Since the publication of the first reference genome sequence of each species, many accessions have been resequenced to study genetic diversity, speciation, and polyploidization in the legume lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Parthasarathy S, Khoo JC, Miller E et al (1990) Low density lipoprotein rich in oleic acid is protected against oxidative modification: implications for dietary prevention of atherosclerosis. Proc Natl Acad Sci 87:3894–3898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu K (2008) Food use of whole soybeans. In: Johnson L, White P, Galloway R (eds) Soybeans. Elsevier, Amsterdam, pp 441–481

    Chapter  Google Scholar 

  3. Xu N, Cheng X-Z, Wang S-H et al (2008) Establishment of an adzuki bean (Vigna angularis) core collection based on geographical distribution and phenotypic data in China. Acta Agron Sin 34:1366–1373

    Article  CAS  Google Scholar 

  4. Keatinge JDHD, Easdown WJ, Yang RY et al (2011) Overcoming chronic malnutrition in a future warming world: the key importance of mungbean and vegetable soybean. Euphytica 180:129–141. https://doi.org/10.1007/s10681-011-0401-6

    Article  Google Scholar 

  5. Hartman GL, West ED, Herman TK (2011) Crops that feed the world 2. Soybean—worldwide production, use, and constraints caused by pathogens and pests. Food Secur 3:5–17. https://doi.org/10.1007/s12571-010-0108-x

    Article  Google Scholar 

  6. Celmeli T, Sari H, Canci H et al (2018) The nutritional content of common bean (Phaseolus vulgaris L.) landraces in comparison to modern varieties. Agronomy 8:166. https://doi.org/10.3390/agronomy8090166

    Article  CAS  Google Scholar 

  7. Duan H (1989) Small bean edible bean crops. Science 1989:160–171

    Google Scholar 

  8. Sikkema P, Soltani N, Shropshire C, Robinson D (2006) Response of adzuki bean to pre-emergence herbicides. Can J Plant Sci 86:601–604

    Article  CAS  Google Scholar 

  9. Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183. https://doi.org/10.1038/nature08670

    Article  CAS  PubMed  Google Scholar 

  10. Dahiya PK, Linnemann AR, Boekel MAJSV et al (2015) Mung bean: technological and nutritional potential. Crit Rev Food Sci Nutr 55:670–688. https://doi.org/10.1080/10408398.2012.671202

    Article  CAS  PubMed  Google Scholar 

  11. Varshney RK, Chen W, Li Y et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89. https://doi.org/10.1038/nbt.2022

    Article  CAS  Google Scholar 

  12. Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246. https://doi.org/10.1038/nbt.2491

    Article  CAS  PubMed  Google Scholar 

  13. Schmutz J, McClean PE, Mamidi S et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713. https://doi.org/10.1038/ng.3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kang YJ, Kim SK, Kim MY et al (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 5:5443. https://doi.org/10.1038/ncomms6443

    Article  CAS  PubMed  Google Scholar 

  15. Kang YJ, Satyawan D, Shim S et al (2015) Draft genome sequence of adzuki bean, Vigna angularis. Sci Rep 5:8069. https://doi.org/10.1038/srep08069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bertioli DJ, Cannon SB, Froenicke L et al (2015) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 47:438

    Google Scholar 

  17. Lam H-M, Xu X, Liu X et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059. https://doi.org/10.1038/ng.715

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Zhou G, Ma J et al (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32:1045–1052. https://doi.org/10.1038/nbt.2979

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Z, Jiang Y, Wang Z et al (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414. https://doi.org/10.1038/nbt.3096

    Article  CAS  PubMed  Google Scholar 

  20. Varshney RK, Saxena RK, Upadhyaya HD et al (2017) Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat Genet 49:1082–1088. https://doi.org/10.1038/ng.3872

    Article  CAS  PubMed  Google Scholar 

  21. Jaffe DB (2003) Whole-genome sequence assembly for mammalian genomes: arachne 2. Genome Res 13:91–96. https://doi.org/10.1101/gr.828403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nawaz MA, Yang SH, Rehman HM et al (2017) Genetic diversity and population structure of Korean wild soybean (Glycine soja Sieb. and Zucc.) inferred from microsatellite markers. Biochem Syst Ecol 71:87–96. https://doi.org/10.1016/j.bse.2017.02.002

    Article  CAS  Google Scholar 

  23. Qiu L-J, Xing L-L, Guo Y et al (2013) A platform for soybean molecular breeding: the utilization of core collections for food security. Plant Mol Biol 83:41–50. https://doi.org/10.1007/s11103-013-0076-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. He S-L, Wang Y-S, Li D-Z, Yi T-S (2016) Environmental and historical determinants of patterns of genetic differentiation in wild soybean (Glycine soja Sieb. et Zucc). Sci Rep 6:22795. https://doi.org/10.1038/srep22795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim MY, Lee S, Van K et al (2010) Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc Natl Acad Sci 107:22032–22037. https://doi.org/10.1073/pnas.1009526107

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vaughan D, Tomooka N, Kaga A (2005) Azuki bean [Vigna angularis (Wild.) Ohwi & Ohashi]. In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering, and crop improvement: grain legumes. Taylor Francis, Boca Raton, FL, pp 347–359

    Google Scholar 

  27. Tomooka N, Vaughan D, Moss H, Maxted N (2002) The Asian Vigna: the genus Vigna subgenus Ceratotropis genetic resouces. Springer, New York, NY, p 270

    Book  Google Scholar 

  28. Kramer C, Soltani N, Robinson DE et al (2012) Control of volunteer adzuki bean in soybean. Agric Sci 03:501–509. https://doi.org/10.4236/as.2012.34059

    Article  CAS  Google Scholar 

  29. Lestari P, Kang YJ, Han K-S et al (2014) Genome-wide single nucleotide polymorphism discovery and validation in adzuki bean. Mol Breed 33:497–501. https://doi.org/10.1007/s11032-013-9962-5

    Article  CAS  Google Scholar 

  30. Lin R, Chai Y, Liao Q et al (2002) Minor grain crops in china. China Agricultural Science and Technology Press, Beijing, pp 210–223

    Google Scholar 

  31. Yang K, Tian Z, Chen C et al (2015) Genome sequencing of adzuki bean (Vigna angularis) provides insight into high starch and low fat accumulation and domestication. Proc Natl Acad Sci 112:13213–13218. https://doi.org/10.1073/pnas.1420949112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sakai H, Naito K, Ogiso-Tanaka E et al (2015) The power of single molecule real-time sequencing technology in the de novo assembly of a eukaryotic genome. Sci Rep 5:16780. https://doi.org/10.1038/srep16780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gnerre S, MacCallum I, Przybylski D et al (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci 108:1513–1518. https://doi.org/10.1073/pnas.1017351108

    Article  CAS  PubMed  Google Scholar 

  34. Marçais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27:764–770. https://doi.org/10.1093/bioinformatics/btr011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Y, Tang H, DeBarry JD et al (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49–e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. https://doi.org/10.1371/journal.pone.0019379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li R, Zhu H, Ruan J et al (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272. https://doi.org/10.1101/gr.097261.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138. https://doi.org/10.1126/science.1162986

    Article  CAS  PubMed  Google Scholar 

  39. Miller JR, Delcher AL, Koren S et al (2008) Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 24:2818–2824. https://doi.org/10.1093/bioinformatics/btn548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Singh J et al Cotyledon cell structure and in vitro starch digestion in navy beans. ScienceDirect. https://www.sciencedirect.com/science/article/pii/B9780124046108000086. Accessed 7 Jan 2019

  41. Geil PB, Anderson JW (1994) Nutrition and health implications of dry beans: a review. J Am Coll Nutr 13:549–558. https://doi.org/10.1080/07315724.1994.10718446

    Article  CAS  PubMed  Google Scholar 

  42. Mamidi S, Rossi M, Moghaddam S et al (2013) Demographic factors shaped diversity in the two gene pools of wild common bean Phaseolus vulgaris L. Heredity 110:267–276. https://doi.org/10.1038/hdy.2012.82

    Article  CAS  PubMed  Google Scholar 

  43. Bitocchi E, Nanni L, Bellucci E et al (2012) Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad Sci 109:E788–E796. https://doi.org/10.1073/pnas.1108973109

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bitocchi E, Bellucci E, Giardini A et al (2013) Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol 197:300–313. https://doi.org/10.1111/j.1469-8137.2012.04377.x

    Article  CAS  PubMed  Google Scholar 

  45. Jaffe DB, Butler JL, Gnerre S et al (2003) Whole-genome sequence assembly for mammalian genomes: Arachne 2. Genome Res 13:91–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Van Ooijen JW (2006) JoinMap® 4.0: software for the calculation of genetic linkage maps in experimental population. Kyazma BV, Wageningen

    Google Scholar 

  47. James Kent W (2002) BLAT – the BLAST-like alignment tool. Genome Res 12:656–664. https://doi.org/10.1101/gr.229202

    Article  CAS  PubMed  Google Scholar 

  48. Haas BJ, Delcher AL, SMM Sm et al (2003) Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res 31:5654–5666. https://doi.org/10.1093/nar/gkg770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Salamov A, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yeh RF, Lim LP, Burge CB (2001) Computational inference of homologous gene structures in the human genome. Genome Res 11:803–816. https://doi.org/10.1101/gr.175701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Greilhuber J, Obermayer R (1998) Genome size variation in Cajanus cajan (Fabaceae): a reconsideration. Plant Syst Evol 212:135–141

    Article  Google Scholar 

  52. Royes WV (1976) Pigeonpea. Evol Crop Plan Theory 1976:154–156

    Google Scholar 

  53. Mula M, Saxena K (2010) Lifting the level of awareness on pigeonpea-a global perspective. International Crops Research Institute for the Semi-Arid Tropics, Patancheru

    Google Scholar 

  54. Singh NK, Gupta DK, Jayaswal PK et al (2012) The first draft of the pigeonpea genome sequence. J Plant Biochem Biotechnol 21:98–112. https://doi.org/10.1007/s13562-011-0088-8

    Article  PubMed  Google Scholar 

  55. Elsik CG, Mackey AJ, Reese JT et al (2007) Creating a honey bee consensus gene set. Genome Biol 8:R13. https://doi.org/10.1186/gb-2007-8-1-r13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jukanti AK, Gaur PM, Gowda CLL, Chibbar RN (2012) Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Br J Nutr 108(Suppl 1):S11–S26. https://doi.org/10.1017/S0007114512000797

    Article  CAS  PubMed  Google Scholar 

  59. Gupta S, Nawaz K, Parween S et al (2017) Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement. DNA Res Int J Rapid Publ Rep Genes Genomes 24:1–10. https://doi.org/10.1093/dnares/dsw042

    Article  CAS  Google Scholar 

  60. Jain M, Misra G, Patel RK et al (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729. https://doi.org/10.1111/tpj.12173

    Article  CAS  PubMed  Google Scholar 

  61. Gaur R, Azam S, Jeena G et al (2012) High-throughput SNP discovery and genotyping for constructing a saturated linkage map of chickpea (Cicer arietinum L.). DNA Res Int J Rapid Publ Rep Genes Genomes 19:357–373. https://doi.org/10.1093/dnares/dss018

    Article  CAS  Google Scholar 

  62. Parween S, Nawaz K, Roy R et al (2015) An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.). Sci Rep 5:12806. https://doi.org/10.1038/srep12806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kochert G, Stalker HT, Gimenes M et al (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291

    Article  CAS  Google Scholar 

  64. Dhillon SS, Rake AV, Miksche JP (1980) Reassociation kinetics and cytophotometric characterization of peanut (Arachis hypogaea L.) DNA. Plant Physiol 65:1121–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Seijo G, Lavia GI, Fernández A et al (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94:1963–1971

    Article  PubMed  Google Scholar 

  66. Moretzsohn MC, Gouvea EG, Inglis PW et al (2012) A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann Bot 111:113–126

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ramos ML, Fleming G, Chu Y et al (2006) Chromosomal and phylogenetic context for conglutin genes in Arachis based on genomic sequence. Mol Gen Genomics 275:578–592

    Article  CAS  Google Scholar 

  68. Samoluk SS, Robledo G, Podio M et al (2015) First insight into divergence, representation and chromosome distribution of reverse transcriptase fragments from L1 retrotransposons in peanut and wild relative species. Genetica 143:113–125

    Article  CAS  PubMed  Google Scholar 

  69. Chen X, Li H, Pandey MK et al (2016) Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proc Natl Acad Sci 113:6785–6790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lu Q, Li H, Hong Y et al (2018) Genome sequencing and analysis of the peanut B-genome progenitor (Arachis ipaensis). Front Plant Sci 9:604

    Article  PubMed  PubMed Central  Google Scholar 

  71. Luo R, Liu B, Xie Y et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:18

    Article  PubMed  PubMed Central  Google Scholar 

  72. Boetzer M, Henkel CV, Jansen HJ et al (2010) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27:578–579

    Article  PubMed  Google Scholar 

  73. Liu B, Yuan J, Yiu S-M et al (2012) COPE: an accurate k-mer-based pair-end reads connection tool to facilitate genome assembly. Bioinformatics 28:2870–2874

    Article  CAS  PubMed  Google Scholar 

  74. McCoy RC, Taylor RW, Blauwkamp TA et al (2014) Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PLoS One 9:e106689

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk-Ha Lee .

Editor information

Editors and Affiliations

Appendix

Appendix

Species

Sequencing platform

Strategy

Reference

Soybean

Sanger

De novo

Schmutz et al. [13]

 

Illumina GA II

Resequencing

Lam et al. [17]

 

Illumina Hiseq2000

Resequencing

Zhou et al. [19]

Wild soybean

Illumina GA

GS FLX

Resequencing

Kim et al. [25]

 

Illumina Hiseq2000

De novo

Li et al. [18]

Mung bean

Illumina Hiseq2000

GS FLX

De novo

Kang et al. [14]

Adzuki bean

Illumina Hiseq2000

GS FLX+

De novo

Kang et al. [15]

 

Illumina Hiseq2000

De novo

Yang et al. [15]

 

Pacbio RS II

De novo

Sakai et al. [32]

Common bean

GS FLX+

GS XLR

Illumina Hiseq2000

Sanger

De novo

Schmutz et al. [13]

Pigeon pea

Illumina GA

Illumina Hiseq2000

De novo

Varshney et al. [11]

 

GS FLX

De novo

Singh et al. [54]

 

Illumina Hiseq2000

Resequencing

Varshney et al. [20]

Chickpea

Illumina Hiseq2000

De novo resequencing

Varshney et al. [12]

 

GS FLX

Illumina GA IIx

De novo

Jain et al. [60]

 

GS FLX+

Illumina HIseq1000

De novo

Parween et al. [62]

 

Illumina HIseq1000

De novo

Gupta et al. [59]

Peanut

Illumina Hiseq2000

Illumina Moleculo

De novo

Bertioli et al. [16]

 

Illumina Hiseq2500

De novo

Chen et al. [69]

 

Illumina Hiseq2500

De novo

Lu et al. [70]

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ha, J., Lee, SH. (2020). Updates on Legume Genome Sequencing. In: Jain, M., Garg, R. (eds) Legume Genomics. Methods in Molecular Biology, vol 2107. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0235-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0235-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0234-8

  • Online ISBN: 978-1-0716-0235-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics