Skip to main content

Studying Protistan Communities in Hydrocarbon-Contaminated Environments

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Protists represent mostly unicellular eukaryotic microorganisms which are crucial for the microbial food webs in virtually all ecosystems. Until recently, much of our knowledge regarding the distribution, taxonomic diversity, and activity of protists relied on classical observation and cultivation methods. The application of molecular biological approaches which are based on the analysis of phylogenetic marker genes, such as the 18S ribosomal RNA gene, has greatly advanced protistan diversity studies in the environment. This development has contributed to a better understanding of how protistan communities – in particular in aquatic systems – relate to other microbial groups and ecosystem processes. However, microbial ecologists have largely neglected the role of protists in hydrocarbon-polluted sites which stands in sharp contrast to the number of studies on prokaryotic communities in these habitats. The protocols collected in this chapter provide detailed descriptions of cultivation-independent methods which we consider highly useful to study protistan communities in polluted habitats. We start with protocols for DNA and RNA extraction from environmental samples, followed by methods which allow the acquisition of qualitative (via terminal restriction fragment length polymorphism (T-RFLP) analysis) as well as quantitative (via quantitative PCR or fluorescence in situ hybridization (FISH)) information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Epstein S, Lopez-Garcia P (2008) “Missing” protists: a molecular prospective. Biodivers Conserv 17:261–276

    Article  Google Scholar 

  2. Adl MS, Gupta VS (2006) Protists in soil ecology and forest nutrient cycling. Can J Forest Res 36:1805–1817

    Article  Google Scholar 

  3. Caron DA, Countway PD, Jones AC, Kim DY, Schnetzer A (2012) Marine protistan diversity. Ann Rev Mar Sci 4:467–493

    Article  PubMed  Google Scholar 

  4. Ogram A (2000) Soil molecular microbial ecology at age 20: methodological challenges for the future. Soil Biol Biochem 32:1499–1504

    Article  CAS  Google Scholar 

  5. Zinger L, Gobet A, Pommier T (2012) Two decades of describing the unseen majority of aquatic microbial diversity. Mol Ecol 21:1878–1896

    Article  PubMed  Google Scholar 

  6. Boenigk J, Pfandl K, Stadler P, Chatzinotas A (2005) High diversity of the ‘Spumella-like’ flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environ Microbiol 7:685–697

    Article  CAS  PubMed  Google Scholar 

  7. Pfandl K, Chatzinotas A, Dyal P, Boenigk J (2009) SSU rRNA gene variation resolves population heterogeneity and ecophysiological differentiation within a morphospecies (Stramenopiles, Chrysophyceae). Limnol Oceanogr 54:171–181

    Article  CAS  Google Scholar 

  8. Slapeta J, Lopez-Garcia P, Moreira D (2006) Global dispersal and ancient cryptic species in the smallest marine eukaryotes. Mol Biol Evol 23:23–29

    Article  CAS  PubMed  Google Scholar 

  9. Lim EL, Caron DA, Delong EF (1996) Development and field application of a quantitative method for examining natural assemblages of protists with oligonucleotide probes. Appl Environ Microbiol 62:1416–1423

    CAS  PubMed  PubMed Central  Google Scholar 

  10. van Hannen EJ, van Agterveld MP, Gons HJ, Laanbroek HJ (1998) Revealing genetic diversity of eukaryotic microorganisms in aquatic environments by denaturing gradient gel electrophoresis. J Phycol 34:206–213

    Article  Google Scholar 

  11. van Hannen EJ, Zwart G, van Agterveld MP, Gons HJ, Ebert J, Laanbroek HJ (1999) Changes in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses. Appl Environ Microbiol 65:795–801

    PubMed  PubMed Central  Google Scholar 

  12. Lopez-Garcia P, Rodriguez-Valera F, Pedros-Alio C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    Article  CAS  PubMed  Google Scholar 

  13. Lawley B, Ripley S, Bridge P, Convey P (2004) Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl Environ Microbiol 70:5963–5972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Slapeta J, Moreira D, Lopez-Garcia P (2005) The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. Proc R Soc B Biol Sci 272:2073–2081

    Article  CAS  Google Scholar 

  15. Marsh TL, Liu WT, Forney LJ, Cheng H (1998) Beginning a molecular analysis of the eukaryal community in activated sludge. Water Sci Technol 37:455–460

    Article  CAS  Google Scholar 

  16. Christaki U, Kormas KA, Genitsaris S et al (2014) Winter-summer succession of unicellular eukaryotes in a meso-eutrophic coastal system. Microb Ecol 67:13–23

    Article  PubMed  Google Scholar 

  17. Duret MT, Pachiadaki MG, Stewart FJ et al (2015) Size-fractionated diversity of eukaryotic microbial communities in the Eastern Tropical North Pacific oxygen minimum zone. FEMS Microbiol Ecol 91

    Google Scholar 

  18. Lentendu G, Wubet T, Chatzinotas A, Wilhelm C, Buscot F, Schlegel M (2014) Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: a multiple barcoding approach. Mol Ecol 23:3341–3355

    Article  CAS  PubMed  Google Scholar 

  19. Lie AAY, Liu ZF, Hu SK et al (2014) Investigating microbial eukaryotic diversity from a global census: insights from a comparison of pyrotag and full-length sequences of 18S rRNA genes. Appl Environ Microbiol 80:4363–4373

    Article  PubMed  PubMed Central  Google Scholar 

  20. Logares R, Audic S, Bass D et al (2014) Patterns of rare and abundant marine microbial eukaryotes. Curr Biol 24:813–821

    Article  CAS  PubMed  Google Scholar 

  21. Lara E, Berney C, Harms H, Chatzinotas A (2007) Cultivation-independent analysis reveals a shift in ciliate 18S rRNA gene diversity in a polycyclic aromatic hydrocarbon-polluted soil. FEMS Microbiol Ecol 62:365–373

    Article  CAS  PubMed  Google Scholar 

  22. Moon-van der Staay SY, Tzeneva VA, van der Staay GWM, de Vos WM, Smidt H, Hackstein JHP (2006) Eukaryotic diversity in historical soil samples. FEMS Microbiol Ecol 57:420–428

    Article  CAS  PubMed  Google Scholar 

  23. Madsen EL, Sinclair JL, Ghiorse WC (1991) In situ biodegradation – microbiological patterns in a contaminated aquifer. Science 252:830–833

    Article  CAS  PubMed  Google Scholar 

  24. Sinclair JL, Ghiorse WC (1987) Distribution of protozoa in subsurface sediments of a pristine groundwater study site in Oklahoma. Appl Environ Microbiol 53:1157–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sinclair JL, Kampbell DH, Cook ML, Wilson JT (1993) Protozoa in subsurface sediments from sites contaminated with aviation gasoline or jet fuel. Appl Environ Microbiol 59:467–472

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sinclair JL, Randtke SJ, Denne JE, Hathaway LR, Ghiorse WC (1990) Survey of microbial-populations in buried-valley aquifer sediments from northeastern Kansas. Ground Water 28:369–377

    Article  Google Scholar 

  27. Ekelund F, Ronn R (1994) Notes on protozoa in agricultural soil with emphasis on heterotrophic flagellates and naked amoebas and their ecology. FEMS Microbiol Rev 15:321–353

    Article  CAS  PubMed  Google Scholar 

  28. Brad T, Braster M, van Breukelen BM, van Straalen NM, Roling WF (2008) Eukaryotic diversity in an anaerobic aquifer polluted with landfill leachate. Appl Environ Microbiol 74:3959–3968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kota S, Borden RC, Barlaz MA (1999) Influence of protozoan grazing on contaminant biodegradation. FEMS Microbiol Ecol 29:179–189

    Article  CAS  Google Scholar 

  30. Kinner NE, Harvey RW, Shay DM, Metge DW, Warren A (2002) Field evidence for a protistan role in an organically-contaminated aquifer. Environ Sci Technol 36:4312–4318

    Article  CAS  PubMed  Google Scholar 

  31. Mattison RG, Taki H, Harayama S (2005) The soil flagellate Heteromita globosa accelerates bacterial degradation of alkylbenzenes through grazing and acetate excretion in batch culture. Microb Ecol 49:142–150

    Article  CAS  PubMed  Google Scholar 

  32. Anderson OR, Gorrell T, Bergen A, Kruzansky R, Levandowsky M (2001) Naked amoebas and bacteria in an oil-impacted salt marsh community. Microb Ecol 42:474–481

    Article  CAS  PubMed  Google Scholar 

  33. Novarino G, Warren A, Kinner NE, Harvey RW (1994) Protists from a sewage-contaminated aquifer on Cape-Cod, Massachusetts. Geomicrobiol J 12:23–36

    Article  Google Scholar 

  34. Zarda B, Mattison G, Hess A, Hahn D, Hohener P, Zeyer J (1998) Analysis of bacterial and protozoan communities in an aquifer contaminated with monoaromatic hydrocarbons. FEMS Microbiol Ecol 27:141–152

    Article  CAS  Google Scholar 

  35. Lara E, Berney C, Ekelund F, Harms H, Chatzinotas A (2007) Molecular comparison of cultivable protozoa from a pristine and a polycyclic aromatic hydrocarbon polluted site. Soil Biol Biochem 39:139–148

    Article  CAS  Google Scholar 

  36. Brad T, van Breukelen BM, Braster M, van Straalen NM, Roling WF (2008) Spatial heterogeneity in sediment-associated bacterial and eukaryotic communities in a landfill leachate-contaminated aquifer. FEMS Microbiol Ecol 65:534–543

    Article  CAS  PubMed  Google Scholar 

  37. Euringer K, Lueders T (2008) An optimised PCR/T-RFLP fingerprinting approach for the investigation of protistan communities in groundwater environments. J Microbiol Methods 75:262–268

    Article  CAS  PubMed  Google Scholar 

  38. Gertler C, Nather DJ, Gerdts G, Malpass MC, Golyshin PN (2010) A mesocosm study of the changes in marine flagellate and ciliate communities in a crude oil bioremediation trial. Microb Ecol 60:180–191

    Article  CAS  PubMed  Google Scholar 

  39. Jousset A, Lara E, Nikolausz M, Harms H, Chatzinotas A (2010) Application of the denaturing gradient gel electrophoresis (DGGE) technique as an efficient diagnostic tool for ciliate communities in soil. Sci Total Environ 408:1221–1225

    Article  CAS  PubMed  Google Scholar 

  40. van Dorst J, Bissett A, Palmer AS et al (2014) Community fingerprinting in a sequencing world. FEMS Microbiol Ecol 89:316–330

    Article  PubMed  Google Scholar 

  41. Stoeck T, Zuendorf A, Breiner HW, Behnke A (2007) A molecular approach to identify active microbes in environmental eukaryote clone libraries. Microb Ecol 53:328–339

    Article  CAS  PubMed  Google Scholar 

  42. Jones SE, Lennon JT (2010) Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci U S A 107:5881–5886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Glaser K, Kuppardt A, Boenigk J, Harms H, Fetzer I, Chatzinotas A (2015) The influence of environmental factors on protistan microorganisms in grassland soils along a land-use gradient. Sci Total Environ 537:33–42

    Article  CAS  PubMed  Google Scholar 

  44. Chambouvet A, Berney C, Romac S et al (2014) Diverse molecular signatures for ribosomally ‘active’ Perkinsea in marine sediments. BMC Microbiol 14

    Google Scholar 

  45. Lejzerowicz F, Voltsky I, Pawlowski J (2013) Identifying active foraminifera in the Sea of Japan using metatranscriptomic approach. Deep Sea Res Part II 86–87:214–220

    Article  Google Scholar 

  46. Kleinsteuber S, Muller FD, Chatzinotas A, Wendt-Potthoff K, Harms H (2008) Diversity and in situ quantification of Acidobacteria subdivision 1 in an acidic mining lake. FEMS Microbiol Ecol 63:107–117

    Article  CAS  PubMed  Google Scholar 

  47. Borrelli C, Sabbatini A, Luna GM et al (2011) Technical note: determination of the metabolically active fraction of benthic foraminifera by means of fluorescent in situ hybridization (FISH). Biogeosciences 8:2075–2088

    Article  Google Scholar 

  48. Fried J, Ludwig W, Psenner R, Schleifer KH (2002) Improvement of ciliate identification and quantification: a new protocol for fluorescence in situ hybridization (FISH) in combination with silver stain techniques. Syst Appl Microbiol 25:555–571

    Article  CAS  PubMed  Google Scholar 

  49. Not F, Simon N, Biegala IC, Vaulot D (2002) Application of fluorescent in situ hybridization coupled with tyramide signal amplification (FISH-TSA) to assess eukaryotic picoplankton composition. Aquat Microb Ecol 28:157–166

    Article  Google Scholar 

  50. Morgan-Smith D, Clouse MA, Herndl GJ, Bochdansky AB (2013) Diversity and distribution of microbial eukaryotes in the deep tropical and subtropical North Atlantic Ocean. Deep Sea Res Part I 78:58–69

    Article  CAS  Google Scholar 

  51. Mangot JF, Domaizon I, Taib N et al (2013) Short-term dynamics of diversity patterns: evidence of continual reassembly within lacustrine small eukaryotes. Environ Microbiol 15:1745–1758

    Article  CAS  PubMed  Google Scholar 

  52. Tarnawski SE, Lara E (2015) From environmental sequences to morphology: observation and characterisation of a paulinellid testate amoeba (Micropyxidiella edaphonis gen. nov. sp. nov. Euglyphida, Paulinellidae) from soil using fluorescent in situ hybridization. Protist 166:264–270

    Article  PubMed  Google Scholar 

  53. Thaler M, Lovejoy C (2012) Distribution and diversity of a protist predator Cryothecomonas (Cercozoa) in arctic marine waters. J Eukaryot Microbiol 59:291–299

    Article  CAS  PubMed  Google Scholar 

  54. Stock A, Breiner HW, Pachiadaki M et al (2012) Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles 16:21–34

    Article  PubMed  Google Scholar 

  55. Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T (2008) Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 74:792–801

    Article  CAS  PubMed  Google Scholar 

  56. Lueders T, Manefield M, Friedrich MW (2004) Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol 6:73–78

    Article  CAS  PubMed  Google Scholar 

  57. Adl SM, Habura A, Eglit Y (2014) Amplification primers of SSU rDNA for soil protists. Soil Biol Biochem 69:328–342

    Article  CAS  Google Scholar 

  58. Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16s-like rRNA-coding regions. Gene 71:491–499

    Article  CAS  PubMed  Google Scholar 

  59. Kowalchuk GA, Gerards S, Woldendorp JW (1997) Detection and characterization of fungal infections of Ammophila arenaria (marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18s rDNA. Appl Environ Microbiol 63:3858–3865

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Medinger R, Nolte V, Pandey RV et al (2010) Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol 19(Suppl 1):32–40

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cavalier-Smith T, Lewis R, Chao EE, Oates B, Bass D (2009) Helkesimastix marina n. sp. (Cercozoa: Sainouroidea superfam. n.) a gliding zooflagellate of novel ultrastructure and unusual ciliary behaviour. Protist 160:452–479

    Article  PubMed  Google Scholar 

  63. Brate J, Logares R, Berney C et al (2010) Freshwater Perkinsea and marine-freshwater colonizations revealed by pyrosequencing and phylogeny of environmental rDNA. ISME J 4:1144–1153

    Article  CAS  PubMed  Google Scholar 

  64. Dunthorn M, Klier J, Bunge J, Stoeck T (2012) Comparing the hyper-variable V4 and V9 regions of the small subunit rDNA for assessment of ciliate environmental diversity. J Eukaryot Microbiol 59:185–187

    Article  CAS  PubMed  Google Scholar 

  65. Weekers PH, Gast RJ, Fuerst PA, Byers TJ (1994) Sequence variations in small-subunit ribosomal RNAs of Hartmannella vermiformis and their phylogenetic implications. Mol Biol Evol 11:684–690

    CAS  PubMed  Google Scholar 

  66. van Hoek AH, van Alen TA, Sprakel VS, Hackstein JH, Vogels GD (1998) Evolution of anaerobic ciliates from the gastrointestinal tract: phylogenetic analysis of the ribosomal repeat from Nyctotherus ovalis and its relatives. Mol Biol Evol 15:1195–1206

    Article  PubMed  Google Scholar 

  67. Lane DJ (1991) 16S/23S rRNA sequencing nucleic acid techniques in bacterial systematics. Wiley, Chichester

    Google Scholar 

  68. Pernthaler A (2010) Identification of environmental microorganisms by fluorescence in situ hybridization. In: Timmis KN, McGenity TJ, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 4127–4135

    Chapter  Google Scholar 

  69. Salter SJ, Cox MJ, Turek EM et al (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12

    Google Scholar 

  70. Zarda B, Hahn D, Chatzinotas A et al (1997) Analysis of bacterial community structure in bulk soil by in situ hybridization. Arch Microbiol 168:185–192

    Article  CAS  Google Scholar 

  71. Aguilera A, Gomez F, Lospitao E, Amils R (2006) A molecular approach to the characterization of the eukaryotic communities of an extreme acidic environment: methods for DNA extraction and denaturing gradient gel electrophoresis analysis. Syst Appl Microbiol 29:593–605

    Article  CAS  PubMed  Google Scholar 

  72. Lekang K, Thompson EM, Troedsson C (2015) A comparison of DNA extraction methods for biodiversity studies of eukaryotes in marine sediments. Aquat Microb Ecol 75:15–25

    Article  Google Scholar 

  73. Plassart P, Terrat S, Thomson B et al (2012) Evaluation of the ISO Standard 11063 DNA extraction procedure for assessing soil microbial abundance and community structure. PLoS One 7

    Google Scholar 

  74. Zhao F, Xu K (2012) Efficiency of DNA extraction methods on the evaluation of soil microeukaryotic diversity. Acta Ecol Sin 32:209–214

    Article  Google Scholar 

  75. Maher N, Dillon HK, Vermund SH, Unnasch TR (2001) Magnetic bead capture eliminates PCR inhibitors in samples collected from the airborne environment, permitting detection of Pneumocystis carinii DNA. Appl Environ Microbiol 67:449–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bürgmann H, Widmer F, Sigler WV, Zeyer J (2003) mRNA extraction and reverse transcription-PCR protocol for detection of nifH gene expression by Azotobacter vinelandii in soil. Appl Environ Microbiol 69:1928–1935

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhou JZ, Wu LY, Deng Y et al (2011) Reproducibility and quantitation of amplicon sequencing-based detection. ISME J 5:1303–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stoeck T, Bass D, Nebel M et al (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19:21–31

    Article  CAS  PubMed  Google Scholar 

  79. Glaser K, Kuppardt A, Krohn S, Heidtmann A, Harms H, Chatzinotas A (2014) Primer pairs for the specific environmental detection and T-RFLP analysis of the ubiquitous flagellate taxa Chrysophyceae and Kinetoplastea. J Microbiol Methods 100:8–16

    Article  CAS  PubMed  Google Scholar 

  80. Collins RE, Rocap G (2007) REPK: an analytical web server to select restriction endonucleases for terminal restriction fragment length polymorphism analysis. Nucleic Acids Res 35(suppl 2):W58–W62

    Article  PubMed  PubMed Central  Google Scholar 

  81. Giebler J, Wick LY, Harms H, Chatzinotas A (2014) Evaluating T-RFLP protocols to sensitively analyze the genetic diversity and community changes of soil alkane degrading bacteria. Eur J Soil Biol 65:107–113

    Article  CAS  Google Scholar 

  82. Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Egert M, Friedrich MW (2005) Post-amplification Klenow fragment treatment alleviates PCR bias caused by partially single-stranded amplicons. J Microbiol Methods 61:69–75

    Article  CAS  PubMed  Google Scholar 

  84. Prescott DM (1994) The DNA of ciliated protozoa. Microbiol Rev 58:233–267

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Choi JW, Stoecker DK (1989) Effects of fixation on cell-volume of marine planktonic protozoa. Appl Environ Microbiol 55:1761–1765

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Pfister G, Sonntag B, Posch T (1999) Comparison of a direct live count and an improved quantitative protargol stain (QPS) in determining abundance and cell volumes of pelagic freshwater protozoa. Aquat Microb Ecol 18:95–103

    Article  Google Scholar 

  87. Sonntag B, Posch T, Psenner R (2000) Comparison of three methods for determining flagellate abundance, cell size, and biovolume in cultures and natural freshwater samples. Arch Hydrobiol 149:337–351

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonis Chatzinotas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Johnke, J., Chatzinotas, A. (2015). Studying Protistan Communities in Hydrocarbon-Contaminated Environments. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_169

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_169

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52776-4

  • Online ISBN: 978-3-662-52778-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics