Skip to main content
Log in

“Missing” protists: a molecular prospective

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Molecular ecology methods based on 18S rRNA amplification and sequencing have revealed an astounding diversity of microbial eukaryotes in every environment sampled so far. This is certainly true of new species and genera, as essentially every new survey discovers a wealth of novel diversity at this level. This is almost certain for taxa that are higher in taxonomic hierarchy, as many molecular surveys reported novel clades within established protistan phyla, with some of these clades repeatedly confirmed by subsequent studies. It may also be that the molecular approaches discovered several lineages of the highest taxonomic order, but this claim has not been vigorously verified as yet. Overall, the field of protistan diversity remains in its infancy. The true scale of this diversity is unknown, and so are the distribution of this diversity, its patterns, spatial and temporal dynamics, and ecological role. The sampled diversity appears to be just the tip of the iceberg, and this offers outstanding opportunities for microbial discovery for the purposes of both basic and applied research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amaral Zettler LA, Gomez F, Zettler E et al (2002) Microbiology: eukaryotic diversity in Spain’s River of Fire. Nature 417:137

    Article  PubMed  CAS  Google Scholar 

  • Anderson IC, Cairney JW (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779

    Article  PubMed  CAS  Google Scholar 

  • Atkins MS, Teske AP, Anderson OR (2000) A survey of flagellate diversity at four deep-sea hydrothermal vents in the Eastern Pacific Ocean using structural and molecular approaches. J Eukaryot Microbiol 47:400–411

    Article  PubMed  CAS  Google Scholar 

  • Baldauf SL (2003) The deep roots of eukaryotes. Science 300:1703–1706

    Article  PubMed  CAS  Google Scholar 

  • Bass D, Cavalier-Smith T (2004) Phylum-specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa). Int J Syst Evol Microbiol 54:2393–2404

    Article  PubMed  CAS  Google Scholar 

  • Behnke A, Bunge J, Barger K et al (2006) Microeukaryote community patterns along an O2/H2S gradient in a supersulfidic anoxic fjord (Framvaren, Norway). Appl Environ Microbiol 72:3626–3636

    Article  PubMed  CAS  Google Scholar 

  • Beijerinck MW (1913) De infusies en de ontdekking der backteriën. Müller, Amsterdam, the Netherlands

  • Berney C, Fahrni J, Pawlowski J (2004) How many novel eukaryotic ‘kingdoms’? Pitfalls and limitations of environmental DNA surveys. BMC Biol 2:13

    Article  PubMed  Google Scholar 

  • Boenigk J, Pfandl K, Stadler P et al (2005) High diversity of the ‘Spumella-like’ flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environ Microbiol 7:685–697

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann H, van der Giezen M, Zhou Y et al (2005) An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. Syst Biol 54:743–757

    Article  PubMed  Google Scholar 

  • Brocks JJ, Logan GA, Buick R et al (1999) Archaean molecular fossils and the early rise of eukaryotes. Science 285:1025–1027

    Article  Google Scholar 

  • Bunge J, Fitzpatrick M (1993) Estimating the number of species—a review. J Am Stat Assoc 88:364–373

    Article  Google Scholar 

  • Cavalier-Smith T (2004) Only six kingdoms of life. Proc R Soc Lond B Biol Sci 271:1251–1262

    Article  CAS  Google Scholar 

  • Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Statist 11:265–270

    Google Scholar 

  • Chao A (2005) Species richness estimation. In: Balakrishnan C, Read B, Vidakovic B (eds) Encyclopedia of statistical sciences. Wiley, New York, pp 7907–7916

    Google Scholar 

  • Chao A, Bunge J (2002) Estimating the number of species in a stochastic abundance model. Biometrics 58:531–539

    Article  PubMed  Google Scholar 

  • Chao A, Li PC, Agatha S et al (2006) A statistical approach to estimate soil ciliate diversity and distribution based on data from five continents. Oikos 114:479–493

    Article  Google Scholar 

  • Coleman AW (2002) Microbial eukaryote species. Science 297:337; author reply 337

    Article  PubMed  CAS  Google Scholar 

  • Countway PD, Gast RJ, Savai P et al (2005) Protistan diversity estimates based on 18S rDNA from seawater incubations in the Western North Atlantic. J Eukaryot Microbiol 52:95–106

    Article  PubMed  CAS  Google Scholar 

  • Courties C, Vaquer A, Troussellier M et al (1994) Smallest eukaryotic organisms. Nature 370:255

    Article  Google Scholar 

  • Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci USA 99:8324–8329

    Article  PubMed  CAS  Google Scholar 

  • Díez B, Pedrós-Alió C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67:2932–2941

    Article  PubMed  Google Scholar 

  • Dolven JK, Lindqvist C, Albert VA et al (2007) Molecular diversity of alveolates associated with Neritic North Atlantic radiolarians. Protist 158:65–76

    Article  PubMed  CAS  Google Scholar 

  • Edgcomb VP, Kysela DT, Teske A et al (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci USA 99:7658–7662

    Article  PubMed  CAS  Google Scholar 

  • Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford Univ Press, Oxford

    Google Scholar 

  • Fenchel T, Kristensen LD, Rasmussen L (1990) Water column anoxia: vertical zonation of planctonic protozoa. Mar Ecol Prog Ser 62:1–10

    Article  Google Scholar 

  • Fenchel T, Bernard C, Esteban G et al (1995) Microbial diversity and activity in a Danish fjord with anoxic deep water. Ophelia 43:45–100

    Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063

    Article  PubMed  CAS  Google Scholar 

  • Finlay BJ, Fenchel T (1999) Divergent perspectives on protist species richness. Protist 150:229–233

    Article  PubMed  CAS  Google Scholar 

  • Foissner W (1999) Protist diversity: estimates of the near-imponderable. Protist 150:363–368

    PubMed  CAS  Google Scholar 

  • Foissner W (2006) Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozool 45:111–136

    Google Scholar 

  • Guillou L, Chretiennot-Dinet MJ, Medlin LK et al (1999) Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J Phycol 35:368–381

    Article  Google Scholar 

  • Guillou L, Eikrem W, Chretiennot-Dinet MJ et al (2004) Diversity of picoplanktonic prasinophytes assessed by direct nuclear SSU rDNA sequencing of environmental samples and novel isolates retrieved from oceanic and coastal marine ecosystems. Protist 155:193–214

    Article  PubMed  CAS  Google Scholar 

  • Gunderson JH, Goss SH, Coats DW (1999) The phylogenetic position of Amoebophrya sp. infecting Gymnodinium sanguineum. J Eukaryot Microbiol 46:194–197

    Article  PubMed  CAS  Google Scholar 

  • Hong SH, Bunge J, Jeon SO, Epstein SS (2006) Predicting microbial species richness. Proc Natl Acad Sci USA 103:117–122

    Article  PubMed  CAS  Google Scholar 

  • Janson S, Gisselson LA, Salomon PS et al (2000) Evidence for multiple species within the endoparasitic dinoflagellate Amoebophrya ceratii as based on 18S rRNA gene-sequence analysis. Parasitol Res 86:929–933

    Article  PubMed  CAS  Google Scholar 

  • Jeon SO, Bunge J, Stoeck T et al (2006) Synthetic statistical approach reveals a high degree of richness of microbial eukaryotes in an anoxic water column. Appl Environ Microbiol 72:6578–6583

    Article  PubMed  CAS  Google Scholar 

  • Johnson MD, Tengs T, Oldach DW et al (2004) Highly divergent SSU rRNA genes found in the marine ciliates Myrionecta rubra and Mesodinium pulex. Protist 155:347–359

    Article  PubMed  CAS  Google Scholar 

  • Katz LA, McManus GB, Snoeyenbos-West OLO et al (2005) Reframing the ‘Everything is everywhere’ debate: evidence for high gene flow and diversity in ciliate morphospecies. Aquat Microbiol Ecol 41:55–65

    Article  Google Scholar 

  • Katz LA, Snoeyenbos-West O, Doerder FP (2006) Patterns of protein evolution in Tetrahymena thermophila: implications for estimates of effective population size. Mol Biol Evol 23:608–614

    Article  PubMed  CAS  Google Scholar 

  • Kolodziej K, Stoeck T (2007) Cellular identification of a novel uncultured marine stramenopile (MAST-12 Clade) small-subunit rRNA gene sequence from a norwegian estuary by use of fluorescence in situ hybridization-scanning electron microscopy. Appl Environ Microbiol 73:2718–2726

    Article  PubMed  CAS  Google Scholar 

  • Kunitomo Y, Sarashina I, Iijima M et al (2006) Molecular phylogeny of acantharian and polycystine radiolarians based on ribosomal DNA sequences, and some comparisons with data from the fossil record. Eur J Protistol 42:143–153

    Article  PubMed  Google Scholar 

  • Lefèvre E, Bardot C, Noël C et al (2007) Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environ Microbiol 9:61–71

    Article  PubMed  CAS  Google Scholar 

  • Lefranc M, Thenot A, Lepere C et al (2005) Genetic diversity of small eukaryotes in lakes differing by their trophic status. Appl Environ Microbiol 71:5935–5942

    Article  PubMed  CAS  Google Scholar 

  • López-García P, Rodríguez-Valera F, Pedrós-Alió C et al (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    Article  PubMed  Google Scholar 

  • López-García P, Rodríguez-Valera F, Moreira D (2002) Towards the monophyly of Haeckel’s Radiolaria: 18S rRNA environmental data support the sisterhood of Polycystinea and Acantharea. Mol Biol Evol 19:118–121

    PubMed  Google Scholar 

  • López-García P, Philippe H, Gaill F et al (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental micro-colonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci USA 100:697–702

    Article  PubMed  CAS  Google Scholar 

  • López-García P, Vereshchaka A, Moreira D (2007) Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost City hydrothermal field. Environ Microbiol 9:546–554

    Article  PubMed  CAS  Google Scholar 

  • Lovejoy C, Massana R, Pedros-Alio C (2006) Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl Environ Microbiol 72:3085–3095

    Article  PubMed  CAS  Google Scholar 

  • Lowe CD, Day A, Kemp SJ et al (2005) There are high levels of functional and genetic diversity in Oxyrrhis marina. J Eukaryot Microbiol 52:250–257

    Article  PubMed  CAS  Google Scholar 

  • Luo Q, Krumholz LR, Najar FZ et al (2005) Diversity of the microeukaryotic community in sulfide-rich Zodletone Spring (Oklahoma). Appl Environ Microbiol 71:6175–6184

    Article  PubMed  CAS  Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG et al (2001) The RDP-II (Ribosomal database project). Nucleic Acids Res 29:173–174

    Article  PubMed  CAS  Google Scholar 

  • Massana R, Guillou L, Diez B et al (2002) Unveiling the organisms behind novel eukaryotic ribosomal DNA sequences from the ocean. Appl Environ Microbiol 68:4554–4558

    Article  PubMed  CAS  Google Scholar 

  • Massana R, Balagué V, Guillou L et al (2004a) Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches. FEMS Microbiol Ecol 50:231–243

    Article  CAS  PubMed  Google Scholar 

  • Massana R, Castresana J, Balague V et al (2004b) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microbiol 70:3528–3534

    Article  PubMed  CAS  Google Scholar 

  • Massana R, Terrado R, Forn I et al (2006) Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ Microbiol 8:1515–1522

    Article  PubMed  CAS  Google Scholar 

  • Medlin LK, Metfies K, Mehl H et al (2006) Picoeukaryotic plankton diversity at the Helgoland time series site as assessed by three molecular methods. Microb Ecol 52:53–71

    Article  PubMed  CAS  Google Scholar 

  • Moon-van der Staay A-Y, van der Staay GWM, Guillou L et al (2000) Abundance and diversity of prymnesiophytes in the picoplankton community from the equatorial Pacific Ocean inferred from 18S rDNA sequences. Limnol Oceanogr 45:98–109

    Article  Google Scholar 

  • Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Article  CAS  Google Scholar 

  • Moon-van der Staay SY, Tzeneva VA, van der Staay GW et al (2006) Eukaryotic diversity in historical soil samples. FEMS Microbiol Ecol 57:420–428

    Article  CAS  Google Scholar 

  • Moreira D, López-García P (2002) Molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol 10:31–38

    Article  PubMed  CAS  Google Scholar 

  • Moreira D, López-García P (2003) Are hydrothermal vents oases for parasitic protists? Trends Parasitol 19:556–558

    Article  PubMed  CAS  Google Scholar 

  • Moreira D, von der Heyden S, Bass D et al (2007) Global eukaryote phylogeny: Combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata. Mol Phylogenet Evol: doi:10.1016/j.ympev.2006.11.001

  • Nanney DL, Park C, Preparata R et al (1998) Comparison of sequence differences in a variable 23S rRNA domain among sets of cryptic species of ciliated protozoa. J Eukaryot Microbiol 45:91–100

    Article  PubMed  CAS  Google Scholar 

  • Nikolaev SI, Berney C, Fahrni JF et al (2004) The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proc Natl Acad Sci USA 101:8066–8071

    Article  PubMed  CAS  Google Scholar 

  • O’Brien HE, Parrent JL, Jackson JA et al (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550

    Article  PubMed  CAS  Google Scholar 

  • O’Brien EA, Koski LB, Zhang Y et al (2007) TBestDB: a taxonomically broad database of expressed sequence tags (ESTs). Nucleic Acids Res 35:D445–D451

    Article  PubMed  CAS  Google Scholar 

  • Okamoto N, Inouye I (2005) The katablepharids are a distant sister group of the Cryptophyta: a proposal for Katablepharidophyta divisio nova/Kathablepharida phylum novum based on SSU rDNA and beta-tubulin phylogeny. Protist 156:163–179

    Article  PubMed  CAS  Google Scholar 

  • Olsen GJ, Lane DJ, Giovannoni SJ et al (1986) Microbial ecology and evolution: a ribosomal RNA approach. Annu Revue Microbiol 40:337–365

    Article  CAS  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  PubMed  CAS  Google Scholar 

  • Philippe H, Lopez P, Brinkmann H et al (2000) Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc R Soc Lond B Biol Sci 267:1213–1221

    Article  CAS  Google Scholar 

  • Reysenbach AL, Cady SL (2001) Microbiology of ancient and modern hydrothermal systems. Trends Microbiol 9:79–86

    Article  PubMed  CAS  Google Scholar 

  • Richards TA, Bass D (2005) Molecular screening of free-living microbial eukaryotes: diversity and distribution using a meta-analysis. Curr Opin Microbiol 8:240–252

    Article  PubMed  CAS  Google Scholar 

  • Richards TA, Vepritskiy AA, Gouliamova DE, Nierzwicki-Bauer SA (2005) The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages. Environ Microbiol 7:1413–1425

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez F, Derelle E, Guillou L et al (2005) Ecotype diversity in the marine picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae). Environ Microbiol 7:853–859

    Article  PubMed  CAS  Google Scholar 

  • Savin MC, Martin JL, LeGresley M et al (2004) Plankton diversity in the Bay of Fundy as measured by morphological and molecular methods. Microb Ecol 48:51–65

    Article  PubMed  CAS  Google Scholar 

  • Slapeta J, López-García P, Moreira D (2006a) Global dispersal and ancient cryptic species in the smallest marine eukaryotes. Mol Biol Evol 23:23–29

    Article  PubMed  CAS  Google Scholar 

  • Slapeta J, López-García P, Moreira D (2006b) Present status of the molecular ecology of kathablepharids. Protist 157:7–11

    Article  PubMed  CAS  Google Scholar 

  • Slapeta J, Moreira D, López-García P (2005) The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. Proc Biol Sci 272:2073–2081

    Article  PubMed  CAS  Google Scholar 

  • Sogin ML, Gunderson JH, Elwood HJ et al (1989) Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science 243:75–77

    Article  PubMed  CAS  Google Scholar 

  • Stoeck T, Epstein S (2003) Novel eukaryotic lineages inferred from small-subunit rRNA analyses of oxygen-depleted marine environments. Appl Environ Microbiol 69:2657–2663

    Article  PubMed  CAS  Google Scholar 

  • Stoeck T, Taylor GT, Epstein SS (2003) Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea). Appl Environ Microbiol 69:5656–5663

    Article  PubMed  CAS  Google Scholar 

  • Stoeck T, Hayward B, Taylor GT et al (2006) A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist 157:31–43

    Article  PubMed  CAS  Google Scholar 

  • Stoeck T, Kasper J, Bunge J, Leslin C, Ilyin V, Epstein S (2007a) Protistan diversity in the arctic: a case of paleoclimate shaping modern biodiversity? PLoS ONE 2:e728

    Article  PubMed  CAS  Google Scholar 

  • Stoeck T, Zuendorf A, Breiner HW, Behnke A (2007b) A molecular approach to identify active microbes in environmental eukaryote clone libraries. Microb Ecol 53:328–339

    Article  PubMed  CAS  Google Scholar 

  • Takishita K, Miyake H, Kawato M et al (2005) Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny. Extremophiles 9:185–196

    Article  PubMed  CAS  Google Scholar 

  • Takishita K, Tsuchiya M, Kawato M et al (2006) Genetic diversity of microbial eukaryotes in anoxic sediment of the saline meromictic lake Namako-Ike (Japan): on the detection of anaerobic or anoxic-tolerant lineages of eukaryotes. Protist 2006 Sep 1; [Epub ahead of print]

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Worden AZ (2006) Picoeukaryote diversity in coastal waters of the Pacific Ocean. Aquat Microbiol Ecol 43:165–175

    Article  Google Scholar 

  • Worden AZ, Nolan JK, Palenik B (2004) Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component. Limnol Oceanogr 49:168–179

    Article  CAS  Google Scholar 

  • Yuan J, Chen MY, Shao P et al (2004) Genetic diversity of small eukaryotes from the coastal waters of Nansha Islands in China. FEMS Microbiol Lett 240:163–170

    Article  PubMed  CAS  Google Scholar 

  • Zuendorf A, Bunge J, Behnke A et al (2006) Diversity estimates of microeukaryotes below the chemocline of the anoxic Mariager Fjord, Denmark. FEMS Microbiol Ecol 58:476–491

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purificación López-García.

Additional information

Special Issue: Protist diversity and geographic distribution. Guest editor: W. Foissner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epstein, S., López-García, P. “Missing” protists: a molecular prospective. Biodivers Conserv 17, 261–276 (2008). https://doi.org/10.1007/s10531-007-9250-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-007-9250-y

Keywords

Navigation