Skip to main content
Log in

Microbial eukaryote life in the new hypersaline deep-sea basin Thetis

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Only recently, a novel anoxic hypersaline (thalassic) basin in the eastern Mediterranean was discovered at a depth of 3,258 m. The halite-saturated brine of this polyextreme basin revealed one of the highest salt concentrations ever reported for such an environment (salinity of 348‰). Using a eukaryote-specific probe and fluorescence in situ hybridization, we counted 0.6 × 104 protists per liter of anoxic brine. SSU rRNA sequence analyses, based on amplification of environmental cDNA identified fungi as the most diverse taxonomic group of eukaryotes in the brine, making deep-sea brines sources of unknown fungal diversity and hotspots for the discovery of novel metabolic pathways and for secondary metabolites. The second most diverse phylotypes are ciliates and stramenopiles (each 20%). The occurrence of closely related ciliate sequences exclusively in other Mediterranean brine basins suggests specific adaptations of the respective organisms to such habitats. Betadiversity-analyses confirm that microeukaryote communities in the brine and the interface are notably different. Several distinct morphotypes in brine samples suggest that the rRNA sequences detected in Thetis brine can be linked to indigenous polyextremophile protists. This contradicts previous assumptions that such extremely high salt concentrations are anathema to eukaryotic life. The upper salinity limits for eukaryotic life remain unidentified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexander E, Stock A, Breiner HW, Behnke A, Bunge J, Yakimov MM, Stoeck T (2009) Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ Microbiol 11:360–381

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SC, Willcock S, Richards TA (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc Royal Soc Lond Ser B Biol Sci 274:3069–3077

    Article  CAS  Google Scholar 

  • Burgaud G, Le Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol 11:1588–1600

    Article  PubMed  Google Scholar 

  • Butschinsky P (1897) Die Protozooenfauna der Salzsee-Limane bei Odessa. Zool Anz 20:194–197

    Google Scholar 

  • Cantrell SA, Casillas-Martinez L, Molina M (2006) Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res 110:962–970

    Article  PubMed  CAS  Google Scholar 

  • Caron DA, Gast RJ (2008) The diversity of free-living protists seen and unseen, cultured and uncultured. In: Zengler K (ed) Accessing uncultivated microorganisms. From the environment to organisms and genomes and back. ASM Press, Washington, pp 67–93

    Google Scholar 

  • Caron DA, Countway PD, Savai P, Gast RJ, Schnetzer A, Moorthi SD, Dennett MR, Moran DM, Jones AC (2009) Defining DNA-based operational taxonomic units for microbial-eukaryote ecology. Appl Environ Microbiol 75:5797–5808

    Article  PubMed  CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    PubMed  CAS  Google Scholar 

  • Chao A, Shen TJ (2003–2005) Program SPADE (species prediction and diversity estimates). http://chao.stat.nthu.edu.tw

  • Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159

    Article  Google Scholar 

  • Clarke KJ, Finlay BJ, Esteban G, Guhl BE, Embley TM (1993) Cyclidium porcatum n. sp: a free-living anaerobic scuticociliate containing a stable complex of hydrogenosomes, eubacteria and archaeobacteria. Eur J Protistol 29:262–270

    Google Scholar 

  • Colwell RK (2009) EstimateS: statistical estimation of species richness and shared species from samples. Version 8.2. User’s Guide and application

  • Cox CS (1993) Roles of water molecules in bacteria and viruses. Orig Life Evol Biosph 23:29–36

    Article  PubMed  CAS  Google Scholar 

  • D’Elia T, Veerapaneni R, Theraisnathan V, Rogers SO (2009) Isolation of fungi from Lake Vostok accretion ice. Mycologia 101:751–763

    Article  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Edgcomb VP, Kysela DT, Teske A, de Vera Gomez A, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci USA 99:7658–7662

    Article  PubMed  CAS  Google Scholar 

  • Edgcomb V, Orsi W, Leslin C, Epstein S, Bunge J, Jeon S, Yakimov MM, Behnke A, Stoeck T (2009) Protistan community patterns within the brine and halocline of deep hypersaline anoxic basins in the eastern Mediterranean Sea. Extremophiles 13:151–167

    Article  PubMed  Google Scholar 

  • Edgcomb VP, Beaudoin D, Gast R, Biddle JF, Teske A (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13:172–183

    Article  PubMed  CAS  Google Scholar 

  • Elloumi J, Carrias J-F, Ayadi H, Sime-Ngando T, Boukhris M, Bouain A (2006) Composition and distribution of planktonic ciliates from ponds of different salinity in the solar saltwork of Sfax, Tunisia. Estuar Coast Shelf Sci 67:21–29

    Article  Google Scholar 

  • Enz G (1879) Über einige Infusorien des Salzteiches zu Szamosfalva. Termes Füzetek 3:1–40

    Google Scholar 

  • Epstein S, López-García P (2007) “Missing” protists: a molecular prospective. Biodivers Conserv 17:261–276

    Article  Google Scholar 

  • Esteban GF, Finlay BJ (2003) Cryptic freshwater ciliates in a hypersaline lagoon. Protist 154:411–418

    Article  PubMed  Google Scholar 

  • Fenchel T, Bernard C (1996) Behavioural responses in oxygen gradients of ciliates from microbial mats. Eur J Protistol 32:55–63

    Article  Google Scholar 

  • Finlay BJ, Esteban GF, Brown S, Fenchel T, Hoef-Emden K (2006) Multiple cosmopolitan ecotypes within a microbial eukaryote morphospecies. Protist 157:377–390

    Article  PubMed  CAS  Google Scholar 

  • Florentin R (1899) Etudes sur la faune des mares salées de Lorraine. Ann Sci Nat Zool 10:209–350

    Google Scholar 

  • Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548

    PubMed  CAS  Google Scholar 

  • Giovannoni SJ, DeLong EF, Olsen GJ, Pace NR (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 170:720–726

    PubMed  CAS  Google Scholar 

  • Gomez F, Moreira D, Benzerara K, López-García P (2011) Solenicola setigera is the first characterized member of the abundant and cosmopolitan uncultured marine stramenopile group MAST-3. Environ Microbiol 13(1):193–202

    Article  PubMed  CAS  Google Scholar 

  • Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, Scanlan DJ, Worden AZ (2008) Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol 10:3349–3365

    Article  PubMed  CAS  Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns—natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240

    CAS  Google Scholar 

  • Gunde-Cimerman N, Ramos J, Plemenitaš A (2009) Halotolerant and halophilic fungi. Mycol Res 113:1231–1241

    Article  PubMed  CAS  Google Scholar 

  • Henneguy F (1890) Sur un Infusoire heterotriche, Fabrea salina. Ann d’Micrographie 3:118–135

    Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871

    Article  PubMed  CAS  Google Scholar 

  • Iwataki M, Kawami H, Matsuoka K (2007) Cochlodinium fulvescens sp. nov. (Gymnodiniales, Dinophyceae), a new chain-forming unarmored dinoflagellate from Asian coasts. Phycol Res 55:231–239

    Article  CAS  Google Scholar 

  • Jebaraj CS, Raghukumar C, Behnke A, Stoeck T (2010) Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol Ecol 71:399–412

    Article  PubMed  CAS  Google Scholar 

  • Kunte HJ, Trüper H, Stan-Lotter H (2002) Halophilic microorganisms. In: Horneck G, Baumstark-Khan C (eds) Astrobiology: the quest for the conditions of life. Springer, Berlin, pp 185–200

    Google Scholar 

  • La Cono V, Smedile F, Bortoluzzi G, Arcadi E, Maimone G, Messina E, Borghini M, Olliveri E, Mazzola S, L’Haridon S, Toffin L, Genovese L, Ferrer M, Giuliano L, Golyshin PN, Yakimov MM (2011) Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: prokaryotes and environmental settings. Environ Microbiol 13(8):2250–2268

    Google Scholar 

  • Lahav R, Fareleira P, Nejidat A, Abeliovich A (2002) The identification and characterization of osmotolerant yeast isolates from chemical wastewater evaporation ponds. Microb Ecol 43:388–396

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–148

    Google Scholar 

  • Le Calvez T, Burgaud G, Mahe S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Probert I, Uitz J, Claustre H, Aris-Brosou S, Frada M, Not F, de Vargas C (2009) Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans. Proc Natl Acad Sci USA 106:12803–12808

    Article  PubMed  CAS  Google Scholar 

  • Lozupone C, Knight R (2008) Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev 32:557–578

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76:6971–6981

    Article  PubMed  CAS  Google Scholar 

  • MacGregor BJ, Moser DP, Baker BJ, Alm EW, Maurer M, Nealson KH, Stahl DA (2001) Seasonal and spatial variability in Lake Michigan sediment small-subunit rRNA concentrations. Appl Environ Microbiol 67:3908–3922

    Article  PubMed  CAS  Google Scholar 

  • Massana R, Guillou L, Díez B, Pedrós-Alió C (2002) Unveiling the organisms behind novel eukaryotic ribosomal DNA sequences from the ocean. Appl Environ Microbiol 68:4554–4558

    Article  PubMed  CAS  Google Scholar 

  • Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491–499

    Article  PubMed  CAS  Google Scholar 

  • Mills HJ, Martinez RJ, Story S, Sobecky PA (2005) Characterization of microbial community structure in Gulf of Mexico gas hydrates: comparative analysis of DNA- and RNA-derived clone libraries. Appl Environ Microbiol 71:3235–3247

    Article  PubMed  CAS  Google Scholar 

  • Nagahama T, Hamamoto M, Nakase T, Takami H, Horikoshi K (2001) Distribution and identification of red yeasts in deep-sea environments around the northwest Pacific Ocean. Antonie van Leeuwenhoek 80:101–110

    Article  PubMed  CAS  Google Scholar 

  • Nebel M, Pfabel C, Stock A, Dunthorn M, Stoeck T (2010) Delimiting operational taxonomic units for assessing ciliate environmental diversity using small-subunit rRNA gene sequences. Environ Microbiol Rep 3:154–158

    Article  Google Scholar 

  • Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Syst 1:2

  • Park JS, Simpson AG (2010) Characterization of halotolerant Bicosoecida and Placididea (Stramenopila) that are distinct from marine forms, and the phylogenetic pattern of salinity preference in heterotrophic stramenopiles. Environ Microbiol 12:1173–1184

    Article  PubMed  CAS  Google Scholar 

  • Park JS, Kim H, Choi DH, Cho BC (2003) Active flagellates grazing on prokaryotes in high salinity waters of a solar saltern. Aquat Microb Ecol 33:173–179

    Article  Google Scholar 

  • Park JS, Cho BC, Simpson AG (2006) Halocafeteria seosinensis gen. et sp. nov. (Bicosoecida), a halophilic bacterivorous nanoflagellate isolated from a solar saltern. Extremophiles 10:493–504

    Article  PubMed  CAS  Google Scholar 

  • Park JS, Simpson AG, Lee WJ, Cho BC (2007) Ultrastructure and phylogenetic placement within Heterolobosea of the previously unclassified, extremely halophilic heterotrophic flagellate Pleurostomum flabellatum (Ruinen 1938). Protist 158:397–413

    Article  PubMed  CAS  Google Scholar 

  • Patterson DJ, Simpson AG (1996) Heterotrophic flagellates from coastal marine and hypersaline sediments in Western Australia. Eur J Protistol 32:423–448

    Article  Google Scholar 

  • Pedrós-Alió C (2004) Trophic ecology of solar salterns. In: Ventosa A (ed) Halophilic microorganisms. Springer, Berlin, pp 33–48

    Google Scholar 

  • Pedrós-Alió C, Calderón-Paz JI, MacLean MH, Medina G, Marrasé C, Gasol JM, Guixa-Boixereu N (2000) The microbial food web along salinity gradients. FEMS Microbiol Ecol 32:143–155

    Article  PubMed  Google Scholar 

  • Pernthaler J, Glöckner FO, Schönhuber W, Amann R (2001) Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. In: Paul JH (ed) Methods in microbiology. Academic Press, San Diego, pp 207–226

    Google Scholar 

  • Post FJ, Borowitzka LJ, Borowitzka MA, Mackay B, Moulton T (1983) The protozoa of a western Australian hypersaline lagoon. Hydrobiologia 105:95–113

    Article  Google Scholar 

  • Prokopowich CD, Gregory TR, Crease TJ (2003) The correlation between rDNA copy number and genome size in eukaryotes. Genome 46:48–50

    Article  PubMed  CAS  Google Scholar 

  • Ruinen J (1938a) Notizen über Ciliaten aus konzentrierten Salzgewässern. Zool Meded 20:243–256

    Google Scholar 

  • Ruinen J (1938b) Notizen über Salzflagellaten II. Über die Verbreitung der Salzflagellaten. Arch Protistenk 90:210–258

    CAS  Google Scholar 

  • Skovgaard A, Legrand C (2005) Observation of live specimens of Pseudotontonia cornuta (Ciliophora: Oligotrichida) reveals new distinctive characters. J Mar Biol Ass UK 85:783–786

    Article  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A fast bootstrapping algorithm for the RAxML web-servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Stoeck T, Zuendorf A, Breiner HW, Behnke A (2007) A molecular approach to identify active microbes in environmental eukaryote clone libraries. Microbiol Ecol 53:328–339

    Article  CAS  Google Scholar 

  • Stoecker DK, Gustafson DE, Merrell JR, Black MMD, Baier CT (1997) Excystment and growth of chrysophytes and dinoflagellates at low temperatures and high salinities in Antarctic sea-ice. J Phycol 33:585–595

    Article  Google Scholar 

  • Tucolesco J (1962) Etudes Protozoologiques sur les eaux Roumaines. I. Espèces nouvelles d’Infusoires de la mer Noire et des bassins salés paramarins. Arch Protistenk 106:1–36

    Google Scholar 

  • Vaupotič T, Gunde-Cimerman N, Plemenitaš A (2007) Novel 3′-phosphoadenosine-5′-phosphatases from extremely halotolerant Hortaea werneckii reveal insight into molecular determinants of salt tolerance of black yeasts. Fungal Genet Biol 44:1109–1122

    Article  PubMed  Google Scholar 

  • Vengosh A, Starinsky A (1993) Relics of evaporated sea water in deep basins of the eastern Mediterranean. Mar Geol 1:15–19

    Article  Google Scholar 

  • Voronin LV (2010) The fungi of small acid lakes. Inland Water Biol 3:254–259

    Google Scholar 

  • Wilbert N (1995) Benthic ciliates of salt lakes. Acta Protozool 34:271–288

    Google Scholar 

  • Zhadanova NN, Zakharchenko V, Vember VV, Nakonechnaya LT (2000) Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycol Res 104:1421–1426

    Article  Google Scholar 

  • Zhu F, Massana R, Not F, Marie D, Vaulot D (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microb Ecol 52:79–92

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by CNR in the frame of EU Project FP7-KBBE-2009-2B-226977 MAMBA. Further financial support comes from the Deutsche Forschungsgemeinschaft (DFG) awarded to TS. We thank Captain Emanuele Gentile and all crew of RV Urania for their valuable professionalism and support during the cruises. We thank Natascha Brecht for help during sampling on the cruise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Stoeck.

Additional information

Communicated by A. Oren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stock, A., Breiner, HW., Pachiadaki, M. et al. Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles 16, 21–34 (2012). https://doi.org/10.1007/s00792-011-0401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-011-0401-4

Keywords

Navigation