Bennett JL, Stüve O (2009) Update on inflammation, neurodegeneration, and immunoregulation in multiple sclerosis: therapeutic implications. Clin Neuropharmacol 32(3):121–132
PubMed
CrossRef
CAS
Google Scholar
Linthicum DS, Munoz JJ, Blaskett A (1982) Acute experimental autoimmune encephalomyelitis in mice. I. Adjuvant action of Bordetella pertussis is due to vasoactive amine sensitization and increased vascular permeability of the central nervous system. Cell Immunol 73(2):299–310
PubMed
CrossRef
CAS
Google Scholar
Westarp ME, Wekerle H, Ben-Nun A et al (1987) T lymphocyte line-mediated experimental allergic encephalomyelitis – a pharmacologic model for testing of immunosuppressive agents for the treatment of autoimmune central nervous system disease. J Pharmacol Exp Ther 242(2):614–620
PubMed
CAS
Google Scholar
Steinman L (2010) Mixed results with modulation of TH-17 cells in human autoimmune diseases. Nat Immunol 11(1):41–44
PubMed
CrossRef
CAS
Google Scholar
Crome SQ, Wang AY, Levings MK (2010) Translational mini-review series on TH17 cells: function and regulation of human T helper 17 cells in health and disease. Clin Exp Immunol 159(2):109–119
PubMed
CrossRef
CAS
Google Scholar
O’Connor RA, Taams LS, Anderton SM (2010) Translational mini-review series on Th17 cells: CD4 T helper cells: functional plasticity and differential sensitivity to regulatory T cell-mediated regulation. Clin Exp Immunol 159(2):137–147
PubMed
CrossRef
CAS
Google Scholar
Correale J, Villa A (2010) Role of regulatory CD8+CD25+FoxP3+ T cells in multiple sclerosis. Ann Neurol 67(5):625–638
PubMed
CAS
Google Scholar
Cepok S, Rosche B, Grummel V et al (2005) Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain 128:1667–1676
PubMed
CrossRef
Google Scholar
Qin Y, Duquette P, Zhang Y et al (1998) Clonal expansion and somatic hypermutation of Vh genes of B cells from the cerebrospinal fluid in multiple sclerosis. J Clin Invest 102:1045–1050
PubMed
CrossRef
CAS
Google Scholar
Owens GP, Burgoon MP, Anthony J et al (2001) The immunoglobulin G heavy chain repertoire in multiple sclerosis plaques is distinct from the heavy chain repertoire in peripheral blood lymphocytes. Clin Immunol 98:258–263
PubMed
CrossRef
CAS
Google Scholar
Monson NL, Brezinschek HP, Brezinschek RI et al (2005) Receptor revision and atypical mutational characteristics in clonally expanded B cells from the cerebrospinal fluid of recently diagnosed multiple sclerosis patients. J Neuroimmunol 158(1–2):170–181
PubMed
CrossRef
CAS
Google Scholar
Lambracht-Washington D, O’Connor KC, Cameron EM et al (2007) Antigen specificity of clonally expanded and receptor edited cerebrospinal fluid B cells from patients with relapsing remitting MS. J Neuroimmunol 186(1–2):164–176
PubMed
CrossRef
CAS
Google Scholar
Serafini B, Rosicarelli B, Magliozzi R et al (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14(2):164–174
PubMed
CrossRef
Google Scholar
Willis SN, Stadelmann C, Rodig SJ et al (2009) Epstein–Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain 132(Pt 12):3318–3328
PubMed
CrossRef
Google Scholar
Lucchinetti C, Brück W, Noseworthy J (2001) Multiple sclerosis: recent developments in neuropathology, pathogenesis, magnetic resonance imaging studies and treatment. Curr Opin Neurol 14(3):259–269
PubMed
CrossRef
CAS
Google Scholar
Stoeckle C, Tolosa E (2009) Antigen processing and presentation in multiple sclerosis. Results Probl Cell Differ 2010;51:149–172
Google Scholar
Goodin DS, Cohen BA, O’Connor P et al (2008) Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Assessment: the use of natalizumab (Tysabri) for the treatment of multiple sclerosis (an evidence-based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 71(10):766–773
Google Scholar
Hauser SL, Waubant E, Arnold DL et al (2008) HERMES Trial Group. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358(7):676–688
Google Scholar
Bar-Or A, Calabresi PA, Arnold D et al (2008) Rituximab in relapsing-remitting multiple sclerosis: a 72-week, open-label, phase I trial. Ann Neurol 63(3):395–400
PubMed
CrossRef
CAS
Google Scholar
Trapp BD, Peterson J, Ransohoff RM et al (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285
PubMed
CrossRef
CAS
Google Scholar
Trapp BD, Bo L, Mork S, Chang A (1999) Pathogenesis of tissue injury in MS lesions. J Neuroimmunol 98:49–56
PubMed
CrossRef
CAS
Google Scholar
Peterson JW, Bo L, Mork S, Chang A et al (2002) VCAM-1-positive microglia target oligodendrocytes at the border of multiple sclerosis lesions. J Neuropathol Exp Neurol 61:539–546
PubMed
Google Scholar
Kutzelnigg A, Lucchinetti CF, Stadelmann C (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128(Pt 11):2705–2712
PubMed
CrossRef
Google Scholar
Lucchinetti C, Brück W, Parisi J et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717
PubMed
CrossRef
CAS
Google Scholar
Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468
PubMed
CrossRef
Google Scholar
Henderson AP, Barnett MH, Parratt JD, Prineas JW et al (2009) Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Ann Neurol 66:739–753
PubMed
CrossRef
Google Scholar
Barnett MH, Sutton I (2006) The pathology of multiple sclerosis: a paradigm shift. Curr Opin Neurol 19:242–247
PubMed
CrossRef
Google Scholar
Breij EC, Brink BP, Veerhuis R et al (2008) Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol 63(1):16–25
PubMed
CrossRef
CAS
Google Scholar
Peterson JW, Bo L, Mork S et al (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50:389–400
PubMed
CrossRef
CAS
Google Scholar
Vercellino M, Plano F, Votta B et al (2005) Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol 64:1101–1107
PubMed
CrossRef
Google Scholar
Wegener C, Esiri MM, Chance SA et al (2006) Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology 67:960–967
CrossRef
Google Scholar
Zipp F (2000) Apoptosis in multiple sclerosis. Cell Tissue Res 301(1):163–171
PubMed
CrossRef
CAS
Google Scholar
Hestvik AL, Skorstad G, Vartdal F et al (2009) Idiotype-specific CD4+ T cell induced apoptosis of human oligodendrocytes. J Autoimmun 32(2):125–132
PubMed
CrossRef
CAS
Google Scholar
Lu F, Selak M, O’Connor J et al (2000) Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in lesions of multiple sclerosis. J Neurol Sci 177:95–103
PubMed
CrossRef
CAS
Google Scholar
Kalman B, Albert RH, Leist TP (2002) Genetics of multiple sclerosis: determinants of autoimmunity and neurodegeneration. Autoimmunity 35(4):225–234
PubMed
CrossRef
CAS
Google Scholar
Kalman B, Laitinen K, Komoly S (2007) The involvement of mitochondria in the pathogenesis of multiple sclerosis. J Neuroimmunol 188(1–2):1–12
PubMed
CrossRef
CAS
Google Scholar
Kalman B (2006) Role of Mitochondria in MS. Curr Neurol Neurosci Rep 6:244–252
PubMed
CrossRef
CAS
Google Scholar
Bo L, Dawson TM, Wesselingh S et al (1994) Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol 36:778–786
PubMed
CrossRef
CAS
Google Scholar
Cross AH, Manning PT, Stern MK et al (1997) Evidence for the production of peroxynitrite in inflammatory CNS demyelination. J Neuroimmunol 80:121–130
PubMed
CrossRef
CAS
Google Scholar
Vladimirova O, O’Connor J, Cahill A et al (1998) Oxidative damage to DNA in plaques of MS brains. Mult Scler 4:413–418
PubMed
CAS
Google Scholar
Powell T, Sussman JG, Davies-Jones GA (1992) MR imaging in acute multiple sclerosis: ringlike appearance in plaques suggesting the presence of paramagnetic free radicals. Am J Neurorad 13:1544–1546
CAS
Google Scholar
Hooper DC, Bagasra O, Marini JC et al (1997) Prevention of experimental allergic encephalomyelitis by targeting nitric oxide and peroxinitrite: implications for the treatment of multiple sclerosis. Proc Natl Acad Sci 94:2528–2533
PubMed
CrossRef
CAS
Google Scholar
Blokhin A, Vyshkina T, Komoly S et al (2008) Lack of mitochondrial DNA deletions in lesion of multiple sclerosis. Neuromolecular Med 10:187–194
PubMed
CrossRef
CAS
Google Scholar
Dutta R, McDonough J, Yin X et al (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59:478–489
PubMed
CrossRef
CAS
Google Scholar
Mahad D, Lassmann H, Turnbull D (2008) Review: mitochondria and disease progression in multiple sclerosis. Neuropathol Appl Neurobiol 34(6):577–589
PubMed
CrossRef
CAS
Google Scholar
Mahad DJ, Ziabreva I, Campbell G et al (2009) Mitochondrial changes within axons in multiple sclerosis. Brain 132(Pt 5):1161–1174
PubMed
CrossRef
Google Scholar
Mahad D, Ziabreva I, Lassmann H et al (2008) Mitochondrial defects in acute multiple sclerosis lesions. Brain 131(Pt 7):1722–1735
PubMed
CrossRef
Google Scholar
Trapp BD, Stys PK (2009) Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Review. Lancet Neurol 8:280–291
PubMed
CrossRef
CAS
Google Scholar
Aboul-Enein F, Lassmann H (2005) Mitochondrial damage and histotoxic hypoxia: a pathway of tissue injury in inflammatory brain disease? Acta Neuropathol (Berl) 109:49–55
CrossRef
CAS
Google Scholar
Stadelmann C, Ludwin S, Tabira T et al (2005) Tissue preconditioning may explain concentric lesions in Balo’s type of multiple sclerosis. Brain 128:979–987
PubMed
CrossRef
Google Scholar
Graumann U, Reynolds R, Steck AJ et al (2003) Molecular changes in normal appearing white matter in multiple sclerosis are characteristic of neuroprotective mechanisms against hypoxic insult. Brain Pathol 13:554–573
PubMed
CrossRef
CAS
Google Scholar
Ludwin SK (1978) Central nervous system demyelination and remyelination in the mouse: an ultrastructural study of cuprizone toxicity. Lab Invest 39:597–612
PubMed
CAS
Google Scholar
Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11:107–116
PubMed
CrossRef
CAS
Google Scholar
Lindner M, Fokuhl J, Linsmeier F et al (2009) Chronic toxic demyelination in the central nervous system leads to axonal damage despite remyelination. Neurosci Lett 453:120–125
PubMed
CrossRef
CAS
Google Scholar
Veto S, Acs P, Bauer J et al (2010) Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death. Brain 133:822–834
PubMed
CrossRef
Google Scholar
Komoly S (2005) Experimental demyelination caused by primary oligodendrocyte dystrophy. Regional distribution of the lesions in the nervous system of mice [corrected]. Ideggyogy Sz 58:40–43
PubMed
Google Scholar
Kipp M, Clarner T, Dang J (2009) The cuprizone animal model: new insights into an old story. Acta Neuropathol 118:723–736
PubMed
CrossRef
Google Scholar
Remington LT, Babcock AA, Zehntner SP et al (2007) Microglial recruitment, activation, and proliferation in response to primary demyelination. Am J Pathol 170(5):1713–1724
PubMed
CrossRef
Google Scholar
Pasquini LA, Calatayud CA, Bertone Una AL et al (2007) The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia. Neurochem Res 32:279–292
PubMed
CrossRef
CAS
Google Scholar
Acs P, Kipp M, Norkute A et al (2009) 17b-Estradiol and progesterone prevent cuprizone provoked demyelination of corpus callosum in male mice. Glia 57:807–814
PubMed
CrossRef
Google Scholar
Lindner M, Heine S, Haastert K et al (2008) Sequential myelin protein expression during remyelination reveals fast and efficient repair after central nervous system demyelination. Neuropathol Appl Neurobiol 34:105–114
PubMed
CAS
Google Scholar
Armstrong RC (2007) Growth factor regulation of remyelination: behind the growing interest in endogenous cell repair of the CNS. Future Neurol 2:689–697
PubMed
CrossRef
CAS
Google Scholar
Morell P, Barrett CV, Mason JL et al (1998) Gene expression in brain during cuprizone-induced demyelination and remyelination. Mol Cell Neurosci 12:220–227
PubMed
CrossRef
CAS
Google Scholar
Taylor LC, Gilmore W, Matsushima GK (2009) SJL mice exposed to cuprizone intoxication reveal strain and gender pattern differences in demyelination. Brain Pathol 19:467–479
PubMed
CrossRef
CAS
Google Scholar
Hiremath MM, Saito Y, Knapp GW et al (1998) Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 92:38–49
PubMed
CrossRef
CAS
Google Scholar
Palkovits M (1983) Punch sampling biopsy technique. Methods Enzymol 103:368–376
PubMed
CrossRef
CAS
Google Scholar