Skip to main content

Advertisement

Log in

Role of mitochondria in multiple sclerosis

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

This review presents inherited and acquired forms of mitochondrial dysfunction associated with oligodendrocytopathy and neurodegeneration in order to better understand the degenerative features of inflammatory demyelination. The recognition that various mitochondrial mechanisms are involved in the pathogenesis of multiple sclerosis leads to therapeutic considerations, re-emphasizing the importance of early neuroprotection in combination with the approved means of immune modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Trapp BD, Peterson J, Ransohoff RM, et al.: Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998, 338:278–285.

    Article  PubMed  CAS  Google Scholar 

  2. Bjartmar C, Trapp BD: Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 2001, 14:271–278.

    Article  PubMed  CAS  Google Scholar 

  3. Husted CA, Goodin DS, Hugg JW, et al.: Biochemical alterations in multiple sclerosis lesions and normalappearing white matter detected by in vivo 31P and 1H spectroscopic imaging. Ann Neurol 1994, 36:157–165.

    Article  PubMed  CAS  Google Scholar 

  4. De Stefano N, Matthews PM, Antel JP, et al.: Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 1995, 38:901–909.

    Article  PubMed  Google Scholar 

  5. Clark JB: N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 1998, 20:271–276.

    Article  PubMed  CAS  Google Scholar 

  6. DiMauro S, Hirano M: Mitochondrial encephalomyopathies: an update [review]. Neuromusc Disord 2005, 15:276–286.

    Article  PubMed  Google Scholar 

  7. Zamzami N, Kroemer G: The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2001, 2:67–71.

    Article  PubMed  CAS  Google Scholar 

  8. Schapira LJ: Mitochondrial respiratory chain disorders II: neurodegenerative disorders and nuclear defects. Lancet 2000, 355:389–394.

    Article  PubMed  Google Scholar 

  9. Kalman B, Leist TP: A mitochondrial component of neurodegeneration in multiple sclerosis. Neuromol Med 2003, 3:147–158.

    Article  CAS  Google Scholar 

  10. Anderson S, Bankier AT, Barrell BG, et al.: Sequence and organization of the human mitochondrial genome. Nature 1981, 290:457–465.

    Article  PubMed  CAS  Google Scholar 

  11. Triepels RH, Van Den Heuvel LP, Trijbels JM, Smeitink JA: Respiratory chain complex I deficiency. Am J Med Genet 2001, 106:37–45.

    Article  PubMed  CAS  Google Scholar 

  12. Tiranti V, Hoertnagel K, Carrozzo R, et al.: Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am J Hum Genet 1998, 63:1609–1621.

    Article  PubMed  CAS  Google Scholar 

  13. Nishino I, Spinazzola A, Hirano M: Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 1999, 283:689–692.

    Article  PubMed  CAS  Google Scholar 

  14. Ogasahara S, Engel AG, Frens D, Mack D: Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc Natl Acad Sci U S A 1989, 86:2379–2382.

    Article  PubMed  CAS  Google Scholar 

  15. Musumeci O, Naini A, Slonim AE, et al.: Familial cerebellar ataxia with muscle coenzyme Q10 deficiency. Neurology 2001, 56:849–855.

    PubMed  CAS  Google Scholar 

  16. Rahman S, Hargreaves I, Clayton P, Heales S: Neonatal presentation of coenzyme q10 deficiency. J Pediatr 2001, 139:456–458.

    Article  PubMed  CAS  Google Scholar 

  17. Vreken P, Valianpour F, Nijtmans LG, et al.: Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome. Biochem Biophys Res Commun 2000, 279:378–382.

    Article  PubMed  CAS  Google Scholar 

  18. Kalman B, Lublin FD, Alder H: Impairment of central and peripheral myelin in mitochondrial diseases. Mult Scler 1997, 2:267–278.

    PubMed  CAS  Google Scholar 

  19. Sadovnick AD, Bulman D, Ebers GC: Parent-child concordance in multiple sclerosis. Ann Neurol 1991, 29:252–255.

    Article  PubMed  CAS  Google Scholar 

  20. Lees F, MacDonald AM, Aldren Turner JW: Leber’s disease with symptoms resembling disseminated sclerosis. J Neurol Neurosurg Psychiatry 1964, 27:415–421.

    PubMed  CAS  Google Scholar 

  21. Wallace DC, Singh G, Lott MT, et al.: Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 1988, 242:1427–1430.

    Article  PubMed  CAS  Google Scholar 

  22. Johns DR, Neufeld MJ, Park RD: An ND-6 mitochondrial DNA mutation associated with Leber hereditary optic neuropathy. Biochem Biophys Res Comm 1992, 187:1551–1557.

    Article  PubMed  CAS  Google Scholar 

  23. Mackey D, Howell N: A variant of Leber hereditary optic neuropathy characterized by recovery of vision and by an unusual mitochondrial genetic etiology. Am J Hum Genet 1992, 51:1218–1228.

    PubMed  CAS  Google Scholar 

  24. Harding AE, Sweeney MG, Miller DH, et al.: Occurrence of a multiple sclerosis-like illness in women who have a Leber’s hereditary optic neuropathy mitochondrial DNA mutation. Brain 1992, 115:979–989.

    Article  PubMed  Google Scholar 

  25. Flanigan KM, Johns DR: Association of the 11778 mitochondrial DNA mutation and demyelinating disease. Neurology 1993, 43:2720–2722.

    PubMed  CAS  Google Scholar 

  26. Kellar-Wood H, Robertson N, Govan GG, et al.: Leber’s hereditary optic neuropathy mitochondrial DNA mutations in multiple sclerosis. Ann Neurol 1994, 36:109–112.

    Article  PubMed  CAS  Google Scholar 

  27. Horvath R, Abicht A, Shoubridge EA, et al.: Leber’s hereditary optic neuropathy presenting as multiple sclerosis-like disease of the CNS. J Neurol 2000, 247:65–67.

    Article  PubMed  CAS  Google Scholar 

  28. Nishimura M, Obayashi H, Ohta M, et al.: No association of the 11778 mitochondrial DNA mutation and multiple sclerosis in Japan. Neurology 1995, 45:1333–1334.

    PubMed  CAS  Google Scholar 

  29. Kalman B, Lublin FD, Alder H: Mitochondrial DNA mutations in multiple sclerosis. Mult Scler 1995, 1:32–36.

    PubMed  CAS  Google Scholar 

  30. Kalman B, Rodriguez-Valdez JL, Bosch U, Lublin FD: Screening for Leber’s hereditary optic neuropathy associated mitochondrial DNA mutations in patients with prominent optic neuritis. Mult Scler 1997, 2:279–282.

    PubMed  CAS  Google Scholar 

  31. Kalman B, Li S, Chatterjee D, et al.: Large scale screening of the mitochondrial DNA reveals no pathogenic mutations but a haplotype associated with multiple sclerosis in Caucasians. Acta Neurol Scand 1999, 99:16–25.

    Article  PubMed  CAS  Google Scholar 

  32. Hanefeld FA, Ernst BP, Wilichowski E, Christen HJ: Leber’s hereditary optic neuropathy mitochondrial DNA mutations in childhood multiple sclerosis. Neuropediatrics 1994, 25:331.

    Article  PubMed  CAS  Google Scholar 

  33. Kalman B, Lublin FD, Alder H: Characterization of the mitochondrial DNA in patients with multiple sclerosis. J Neurol Sci 1996, 140:75–84.

    Article  PubMed  CAS  Google Scholar 

  34. Kalman B, Mandler RN: Studies of mitochondrial DNA in Devic’s disease revealed no pathogenic mutations, but polymorphisms also found in association with multiple sclerosis. Ann Neurol 2002, 51:661–662.

    Article  PubMed  Google Scholar 

  35. Brown MD, Sun F, Wallace DC: Clustering of Caucasian Leber hereditary optic neuropathy patients containing the 11,778 or 14,484 mutations on an mtDNA lineage. Am J Hum Genet 1997, 60:381–387.

    PubMed  CAS  Google Scholar 

  36. Qi X, Lewin AS, Hauswirth WW, Guy J: Suppression of complex I gene expression induces optic neuropathy. Ann Neurol 2003, 53:198–205.

    Article  PubMed  CAS  Google Scholar 

  37. Vyshkina T, Banisor I, Shugart YY, et al.: Genetic variants of Complex I in multiple sclerosis. J Neurol Sci 2005, 228:55–64.

    Article  PubMed  CAS  Google Scholar 

  38. Kovacs GG, Hoftberger R, Majtenyi K, et al.: Neuropathology of white matter disease in Leber’s hereditary optic neuropathy. Brain 2005, 128:35–41. This is the first autopsy report of a patient with the T14,484C primary LHON mutation and an MS-like disease. The pathology includes lesions with metabolic (cystic necrosis) and autoimmune (plaque) characteristics.

    Article  PubMed  Google Scholar 

  39. Baracca A, Solaini G, Sgarbi G, et al.: Severe impairment of Complex I-driven adenosine triphosphate synthesis in Leber Hereditary Optic Neuropathy Cybrids. Arch Neurol 2005, 62:730–736.

    Article  PubMed  Google Scholar 

  40. Smith PR, Cooper JM, Govan GG, et al.: Antibodies to human optic nerve in Leber’s hereditary optic neuropathy. J Neurol Sci 1995, 130:134–138.

    Article  PubMed  CAS  Google Scholar 

  41. Vladimirova O, O’Connor J, Cahill A, et al.: Oxidative damage to DNA in plaques of MS brains. Mult Scler 1998, 4:413–418.

    PubMed  CAS  Google Scholar 

  42. Cross AH, Manning PT, Stern MK, Misko TP: Evidence for the production of peroxynitrite in inflammatory CNS demyelination. J Neuroimmunol 1997, 80:121–130.

    Article  PubMed  CAS  Google Scholar 

  43. Lu F, Selak M, O’Connor J, et al.: Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci 2000, 177:95–103.

    Article  PubMed  CAS  Google Scholar 

  44. Lucchinetti C, Bruck W, Parisi J, et al.: Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000, 47:707–717.

    Article  PubMed  CAS  Google Scholar 

  45. Aboul-Enein F, Lassmann H: Mitochondrial damage and histotoxic hypoxia: a pathway of tissue injury in inflammatory brain disease? Acta Neuropathol 2005, 109:49–55.

    Article  PubMed  CAS  Google Scholar 

  46. Stadelmann C, Ludwin S, Tabira T, et al.: Tissue preconditioning may explain concentric lesions in Balo’s type of multiple sclerosis. Brain 2005, 128:979–987. This paper elegantly demonstrates that the concentric layering of normal and damaged myelin in Balo’s disease may be related to the upregulation of proteins involved in tissue preconditioning and neuroprotection at the edges of lesions, thereby providing resistance to further damage. At a certain distance, the protection, however, will be overcome by forces promoting inflammation and demyelination.

    Article  PubMed  Google Scholar 

  47. Andrews HE, Nichols PP, Bates D, Turnbull DM: Mitochondrial dysfunction plays a key role in progressive axonal loss in multiple sclerosis. Med Hypothesis 2005, 64:669–677.

    Article  CAS  Google Scholar 

  48. Perieir O, Gregoire A: Electron microscopic features of multiple sclerosis lesions. Brain 1965, 88:937–952.

    Article  Google Scholar 

  49. Griffiths I, Klugmann M, Anderson T, et al.: Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 1998, 280:1610–1613.

    Article  PubMed  CAS  Google Scholar 

  50. Craner MJ, Newcombe J, Black JA, et al.: Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proc Natl Acad Sci U S A 2004, 101:8168–8173. This study identifies molecular subtypes of voltage-gaited sodium channels in demyelinated and degenerating axons in MS, and reveals the co-expression of Nav1.6 and Na+/Ca2+ exchanger in degenerating axons.

    Article  PubMed  CAS  Google Scholar 

  51. Dutta R, McDonough J, Yin X, et al.: Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 2006, 59:478–489.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernadette Kalman MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalman, B. Role of mitochondria in multiple sclerosis. Curr Neurol Neurosci Rep 6, 244–252 (2006). https://doi.org/10.1007/s11910-006-0012-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-006-0012-0

Keywords

Navigation