Skip to main content

Detection of CCND1 Locus Amplification by Fluorescence In Situ Hybridization

  • Protocol
  • First Online:
The Retinoblastoma Protein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1726))

Abstract

It is well known that chromosomal aberrations of tumors are associated with the initiation and progression of malignancy. Fluorescence in situ hybridization (FISH) is a powerful, rapid method to detect chromosome copy number and structural alterations in tissue sections, chromosome, or interphase cellular preparations via hybridization of complementary probe sequences. The technique is based on the complementary nature of DNA double strands, which allows fluorescently labeled DNA probes to be used as probes to label the complementary sequences of target cells, chromosomes, and tissues. FISH technique has many applications, including basic gene mapping, used in pathological diagnosis to detect chromosome and gene copy number aberrations, translocations, microdeletions, and duplications. For the recognition of gene amplifications and deletions, locus-specific probes that are collections of one or a few cloned DNA sequences are routinely used. Multiplex-FISH (M-FISH) technique visualizes all chromosomes with different colors using spectrally distinct fluorophores for each chromosome in one experiment to detect numerical and structural alterations of chromosomes obtained from tumor cells. Recently many of the gene-specific probes are commercially available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fu M et al (2004) Minireview: cyclin D1: normal and abnormal functions. Endocrinology 145(12):5439–5447

    Article  CAS  PubMed  Google Scholar 

  2. Kim JK, Diehl JA (2009) Nuclear cyclin D1: an oncogenic driver in human cancer. J Cell Physiol 220(2):292–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ramirez JA et al (2005) Cyclin D1 expression in melanocytic lesions of the skin. Ann Diagn Pathol 9(4):185–188

    Article  PubMed  Google Scholar 

  4. Diehl JA (2002) Cycling to cancer with cyclin D1. Cancer Biol Ther 1(3):226–231

    Article  CAS  PubMed  Google Scholar 

  5. Elsheikh S et al (2008) CCND1 amplification and cyclin D1 expression in breast cancer and their relation with proteomic subgroups and patient outcome. Breast Cancer Res Treat 109(2):325–335

    Article  CAS  PubMed  Google Scholar 

  6. Vizkeleti L et al (2012) The role of CCND1 alterations during the progression of cutaneous malignant melanoma. Tumour Biol 33(6):2189–2199

    Article  CAS  PubMed  Google Scholar 

  7. Gerami P et al (2011) Copy number gains in 11q13 and 8q24 [corrected] are highly linked to prognosis in cutaneous malignant melanoma. J Mol Diagn 13(3):352–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Akervall J et al (2003) The gene ratios c-MYC:cyclin-dependent kinase (CDK)N2A and CCND1:CDKN2A correlate with poor prognosis in squamous cell carcinoma of the head and neck. Clin Cancer Res 9(5):1750–1755

    CAS  PubMed  Google Scholar 

  9. Monteiro E et al (2004) Cyclin D1 A870G polymorphism and amplification in laryngeal squamous cell carcinoma: implications of tumor localization and tobacco exposure. Cancer Detect Prev 28(4):237–243

    Article  CAS  PubMed  Google Scholar 

  10. Lazar V et al (2009) Characterization of candidate gene copy number alterations in the 11q13 region along with BRAF and NRAS mutations in human melanoma. Mod Pathol 22(10):1367–1378

    Article  CAS  PubMed  Google Scholar 

  11. Bockmuhl U et al (2000) Genetic imbalances with impact on survival in head and neck cancer patients. Am J Pathol 157(2):369–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Izzo JG et al (2003) Cyclin D1 genotype, response to biochemoprevention, and progression rate to upper aerodigestive tract cancer. J Natl Cancer Inst 95(3):198–205

    Article  CAS  PubMed  Google Scholar 

  13. Ooi A et al (2016) Gene amplification of CCNE1, CCND1 and CDK6 in gastric cancers detected by multiplex ligation-dependent probe amplification and fluorescence in situ hybridization. Hum Pathol 61:58–67

    Article  PubMed  Google Scholar 

  14. Gerami P (2012) A highly specific and discriminatory FISH assay for distinguishing between benign and malignant melanocytic neoplasms. Am J Surg Pathol 36(6):808–817

    Article  PubMed  Google Scholar 

  15. Ponti G et al (2013) Fluorescence in-situ hybridization and dermoscopy in the assessment of controversial melanocytic tumors. Melanoma Res 23(6):474–480

    Article  CAS  PubMed  Google Scholar 

  16. Andreeff M, Pinkel D (1999) Introduction to fluorescence in situ hybridization: principles and clinical applications. Wiley-Liss, New York, p xi, 455

    Google Scholar 

  17. Saunders K, Czepulkowski B (2001) Culture of human cells for chromosomal analysis in analyzing chrosmosomes. BIOS Scientific Publishers, Oxford, UK

    Google Scholar 

  18. Dogan S et al (2013) Use of touch imprint cytology as a simple method to enrich tumor cells for molecular analysis. Cancer Cytopathol 121(7):354–360

    Article  CAS  PubMed  Google Scholar 

  19. Preparation of paraffin sections and frozen tissue for FISH (2006). Available from: https://ccr.cancer.gov/sites/default/files/preparation_of_paraffin_sections_and_frozen_tissue_for_fish.pdf

  20. Garimberti E, Tosi S (2010) Fluorescence in situ hybridization (FISH), basic principles and methodology. Methods Mol Biol 659:3–20

    Article  CAS  PubMed  Google Scholar 

  21. Deng W et al (2003) A new method for improving metaphase chromosome spreading. Cytometry A 51(1):46–51

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This publication was supported by the National Research Development and Innovation Fund (grant number K112327) and the GINOP-2.3.2-15-2016-00005 project, the project is cofinanced by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margit Balázs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Balázs, M., Koroknai, V., Szász, I., Ecsedi, S. (2018). Detection of CCND1 Locus Amplification by Fluorescence In Situ Hybridization. In: Santiago-Cardona, P. (eds) The Retinoblastoma Protein. Methods in Molecular Biology, vol 1726. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7565-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7565-5_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7564-8

  • Online ISBN: 978-1-4939-7565-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics