Skip to main content

Advertisement

Log in

CCND1 amplification and cyclin D1 expression in breast cancer and their relation with proteomic subgroups and patient outcome

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Introduction

Despite strong evidence regarding the role of CCND1 amplification and protein overexpression in breast carcinoma, the associations between CCND1 amplification/cyclin D1 overexpression and clinicopathological variables and clinical outcome remain controversial.

Aims of the study

(1) to correlate cyclin D1 expression with gene amplification; (2) to analyse the correlations between CCND1 amplification and overexpression with clinicopathological features and patients’ outcome in invasive breast cancer; (3) to define the prevalence and clinical significance of cyclin D1 overexpression and CCND1 amplification in ER positive breast carcinomas (4) to define the prevalence of cyclin D1 overexpression and CCND1 amplification in breast cancers with basal-like immunophenotype.

Materials and methods

CCND1 amplification and protein expression were assessed on a tissue microarray containing 880 unselected invasive breast cancer cases, by means of chromogenic in situ hybridisation using the Spotlight CCND1 amplification probe and immunohistochemistry, using the rabbit monoclonal antibody SP4.

Results

A total of 59/613 tumours (9.6%) showed CCND1 amplification and 224/514 (43.6%) showed strong cyclin D1 expression. A strong positive correlation between CCND1 amplification and higher levels of cyclin D1 expression was found (P < 0.001). Basal-like cancers showed infrequent CCND1 amplification and cyclin D1 overexpression (P < 0.001). Both CCND1 amplification and cyclin D1 expression were associated with positive ER status. CCND1 gene amplification was an independent prognostic factor for patients with ER positive breast cancer.

Conclusion

Our results demonstrate a strong correlation between CCND1 amplification and its protein expression in breast cancer. However, protein expression is more pervasive than gene amplification and associated with ER expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rakha EA, Green AR, Powe DG et al (2006) Chromosome 16 tumor-suppressor genes in breast cancer. Genes Chromosomes Cancer 45(6):527–535

    Article  PubMed  CAS  Google Scholar 

  2. Motokura T, Bloom T, Kim HG et al (1991) A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature 350(6318):512–515

    Article  PubMed  CAS  Google Scholar 

  3. Oesterreich S, Deng W, Jiang S et al (2003) Estrogen-mediated down-regulation of E-cadherin in breast cancer cells. Cancer Res 63(17):5203–5208

    PubMed  CAS  Google Scholar 

  4. Ma XJ, Salunga R, Tuggle JT et al (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 100:5974–5979

    Article  PubMed  CAS  Google Scholar 

  5. Wang TC, Cardiff RD, Zukerberg L et al (1994) Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369(6482):669–671

    Article  PubMed  CAS  Google Scholar 

  6. Zwijsen RM, Wientjens E, Klompmaker R et al (1997) CDK-independent activation of estrogen receptor by cyclin D1. Cell 88(3):405–415

    Article  PubMed  CAS  Google Scholar 

  7. Neuman E, Ladha MH, Lin N et al (1997) Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol Cell Biol 17(9):5338–5347

    PubMed  CAS  Google Scholar 

  8. Prall OW, Rogan EM, Musgrove EA et al (1998) c-Myc or cyclin D1 mimics estrogen effects on cyclin E-Cdk2 activation and cell cycle reentry. Mol Cell Biol 18(8):4499–4508

    PubMed  CAS  Google Scholar 

  9. Altucci L, Addeo R, Cicatiello L et al (1996) 17beta-Estradiol induces cyclin D1 gene transcription, p36D1-p34cdk4 complex activation and p105Rb phosphorylation during mitogenic stimulation of G(1)-arrested human breast cancer cells. Oncogene 12(11):2315–2324

    PubMed  CAS  Google Scholar 

  10. Musgrove EA, Lee CS, Buckley MF et al (1994) Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc Natl Acad Sci USA 91(17):8022–8026

    Article  PubMed  CAS  Google Scholar 

  11. Quelle DE, Ashmun RA, Shurtleff SA et al (1993) Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 7(8):1559–1571

    Article  PubMed  CAS  Google Scholar 

  12. Baldin V, Lukas J, Marcote MJ et al (1993) Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 7(5):812–821

    Article  PubMed  CAS  Google Scholar 

  13. Musgrove EA, Hamilton JA, Lee CS et al (1993) Growth factor, steroid, and steroid antagonist regulation of cyclin gene expression associated with changes in T-47D human breast cancer cell cycle progression. Mol Cell Biol 13(6):3577–3587

    PubMed  CAS  Google Scholar 

  14. Molland JG, Donnellan M, Janu NC et al (2004) Infiltrating lobular carcinoma—a comparison of diagnosis, management and outcome with infiltrating duct carcinoma. Breast 13(5):389–396

    Article  PubMed  CAS  Google Scholar 

  15. Zukerberg LR, Yang WI, Gadd M et al (1995) Cyclin D1 (PRAD1) protein expression in breast cancer: approximately one-third of infiltrating mammary carcinomas show overexpression of the cyclin D1 oncogene. Mod Pathol 8(5):560–567

    PubMed  CAS  Google Scholar 

  16. Reis-Filho JS, Savage K, Lambros MB et al (2006) Cyclin D1 protein overexpression and CCND1 amplification in breast carcinomas: an immunohistochemical and chromogenic in situ hybridisation analysis. Mod Pathol 19(7):999–1009

    Article  PubMed  CAS  Google Scholar 

  17. Ormandy CJ, Musgrove EA, Hui R et al (2003) Cyclin D1, EMS1 and 11q13 amplification in breast cancer. Breast Cancer Res Treat 78(3):323–335

    Article  PubMed  CAS  Google Scholar 

  18. Mrhalova M, Kodet R, Strnad P (2002) Invasive ductal carcinoma of the breast: study of the number of copies of the CCND1 gene and chromosome 11 using fluorescence in situ hybridization (FISH) in comparison with expression of cyclin D1 protein and estrogen receptors (ER alpha) with immunohistochemical detection. Cas Lek Cesk 141(22):708–714

    PubMed  CAS  Google Scholar 

  19. Jirstrom K, Stendahl M, Ryden L et al (2005) Adverse effect of adjuvant tamoxifen in premenopausal breast cancer with cyclin D1 gene amplification. Cancer Res 65(17):8009–8016

    PubMed  Google Scholar 

  20. Chen X, Bargonetti J, Prives C (1995) p53, through p21 (WAF1/CIP1), induces cyclin D1 synthesis. Cancer Res 55(19):4257–4263

    PubMed  CAS  Google Scholar 

  21. Reis-Filho JS, Simpson PT, Jones C et al (2005) Pleomorphic lobular carcinoma of the breast: role of comprehensive molecular pathology in characterization of an entity. J Pathol 207(1):1–13

    Article  PubMed  CAS  Google Scholar 

  22. Reis-Filho JS, Milanezi F, Carvalho S et al (2005) Metaplastic breast carcinomas exhibit EGFR, but not HER2, gene amplification and overexpression: immunohistochemical and chromogenic in situ hybridization analysis. Breast Cancer Res 7(6):R1028–R1035

    Article  PubMed  CAS  Google Scholar 

  23. Lambros MB, Simpson PT, Jones C et al (2006) Unlocking pathology archives for molecular genetic studies: a reliable method to generate probes for chromogenic and fluorescent in situ hybridization. Lab Invest 86(4):398–408

    Article  PubMed  CAS  Google Scholar 

  24. Elsheikh SE, Green AR, Lambros MBK, Turner NC, Grainge MJ, Powe D, Ellis IO, Reis-Filho JS (2007) FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis. Breast Cancer Res 9(2):R23

    Article  CAS  Google Scholar 

  25. Madjd Z, Pinder SE, Paish C et al (2003) Loss of CD59 expression in breast tumours correlates with poor survival. J Pathol 200(5):633–639

    Article  PubMed  CAS  Google Scholar 

  26. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19(5):403–410

    Article  PubMed  CAS  Google Scholar 

  27. Singletary SE, Connolly JL (2006) Breast cancer staging: working with the sixth edition of the AJCC cancer staging manual. CA Cancer J Clin 56(1):37–47

    Article  PubMed  Google Scholar 

  28. Galea MH, Blamey RW, Elston CE et al (1992) The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Res Treat 22(3):207–219

    Article  PubMed  CAS  Google Scholar 

  29. Abd El-Rehim DM, Ball G, Pinder SE et al (2005) High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer 116(3):340–350

    Article  PubMed  CAS  Google Scholar 

  30. Abd El-Rehim DM, Pinder SE, Paish CE et al (2004) Expression and co-expression of the members of the epidermal growth factor receptor (EGFR) family in invasive breast carcinoma. Br J Cancer 91(8):1532–1542

    Article  PubMed  CAS  Google Scholar 

  31. Rakha EA, Putti TC, Abd El-Rehim DM et al (2006) Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J Pathol 208(4):495–506

    Article  PubMed  CAS  Google Scholar 

  32. Cheuk W, Chan JK (2004) Subcellular localization of immunohistochemical signals: knowledge of the ultrastructural or biologic features of the antigens helps predict the signal localization and proper interpretation of immunostains. Int J Surg Pathol 12(3):185–206

    Article  PubMed  CAS  Google Scholar 

  33. Harvey JM, Clark GM, Osborne CK et al (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17(5):1474–1481

    PubMed  CAS  Google Scholar 

  34. Abd El-Rehim DM, Ball G, Pinder SE et al (2005) High throughput protein expression analysis using tissue microarray technology of a large well characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer 116(3):340–350

    Article  PubMed  CAS  Google Scholar 

  35. Makretsov NA, Huntsman DG, Nielsen TO et al (2004) Hierarchical clustering analysis of tissue microarray immunostaining data identifies prognostically significant groups of breast carcinoma. Clin Cancer Res 10(18 Pt 1):6143–6151

    Article  PubMed  CAS  Google Scholar 

  36. Barnes DM, Gillett CE (1998) Cyclin D1 in breast cancer. Breast Cancer Res Treat 52(1–3):1–15

    Article  PubMed  CAS  Google Scholar 

  37. Butt AJ, McNeil CM, Musgrove EA et al (2005) Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr Relat Cancer 12(Suppl 1):S47–S59

    Article  PubMed  CAS  Google Scholar 

  38. Buckley MF, Sweeney KJ, Hamilton JA et al (1993) Expression and amplification of cyclin genes in human breast cancer. Oncogene 8(8):2127–2133

    PubMed  CAS  Google Scholar 

  39. Barbareschi M, Pelosio P, Caffo O et al (1997) Cyclin-D1-gene amplification and expression in breast carcinoma: relation with clinicopathologic characteristics and with retinoblastoma gene product, p53 and p21WAF1 immunohistochemical expression. Int J Cancer 74(2):171–174

    Article  PubMed  CAS  Google Scholar 

  40. Cheuk W, Wong KO, Wong CS et al (2004) Consistent immunostaining for cyclin D1 can be achieved on a routine basis using a newly available rabbit monoclonal antibody. Am J Surg Pathol 28(6):801–807

    Article  PubMed  Google Scholar 

  41. Watts CK, Sweeney KJ, Warlters A et al (1994) Antiestrogen regulation of cell cycle progression and cyclin D1 gene expression in MCF-7 human breast cancer cells. Breast Cancer Res Treat 31(1):95–105

    Article  PubMed  CAS  Google Scholar 

  42. Michalides R, Hageman P, van Tinteren H et al (1996) A clinicopathological study on overexpression of cyclin D1 and of p53 in a series of 248 patients with operable breast cancer. Br J Cancer 73(6):728–734

    PubMed  CAS  Google Scholar 

  43. Caldon CE, Daly RJ, Sutherland RL et al (2006) Cell cycle control in breast cancer cells. J Cell Biochem 97(2):261–274

    Article  PubMed  CAS  Google Scholar 

  44. Olsson H, Borg A, Ferno M et al (1991) Her-2/neu and INT2 proto-oncogene amplification in malignant breast tumors in relation to reproductive factors and exposure to exogenous hormones. J Natl Cancer Inst 83(20):1483–1487

    Article  PubMed  CAS  Google Scholar 

  45. Hui R, Ball JR, Macmillan RD et al (1998) EMS1 gene expression in primary breast cancer: relationship to cyclin D1 and oestrogen receptor expression and patient survival. Oncogene 17(8):1053–1059

    Article  PubMed  CAS  Google Scholar 

  46. Vaziri SA, Tubbs RR, Darlington G et al (2001) Absence of CCND1 gene amplification in breast tumours of BRCA1 mutation carriers. Mol Pathol 54(4):259–263

    Article  PubMed  CAS  Google Scholar 

  47. Koziczak M, Holbro T, Hynes NE (2004) Blocking of FGFR signaling inhibits breast cancer cell proliferation through downregulation of D-type cyclins. Oncogene 23(20):3501–3508

    Article  PubMed  CAS  Google Scholar 

  48. Cicatiello L, Addeo R, Sasso A et al (2004) Estrogens and progesterone promote persistent CCND1 gene activation during G1 by inducing transcriptional depression via c-Jun/c-Fos/estrogen receptor (progesterone receptor) complex assembly to a distal regulatory element and recruitment of cyclin D1 to its own gene promoter. Mol Cell Biol 24(16):7260–7274

    Article  PubMed  CAS  Google Scholar 

  49. Loden M, Stighall M, Nielsen NH et al (2002) The cyclin D1 high and cyclin E high subgroups of breast cancer: separate pathways in tumorogenesis based on pattern of genetic aberrations and inactivation of the pRb node. Oncogene 21(30):4680–4690

    Article  PubMed  CAS  Google Scholar 

  50. Korsching E, Packeisen J, Agelopoulos K et al (2002) Cytogenetic alterations and cytokeratin expression patterns in breast cancer: integrating a new model of breast differentiation into cytogenetic pathways of breast carcinogenesis. Lab Invest 82(11):1525–1533

    PubMed  CAS  Google Scholar 

  51. Cuny M, Kramar A, Courjal F et al (2000) Relating genotype and phenotype in breast cancer: an analysis of the prognostic significance of amplification at eight different genes or loci and of p53 mutations. Cancer Res 60(4):1077–1083

    PubMed  CAS  Google Scholar 

  52. Courjal F, Louason G, Speiser P et al (1996) Cyclin gene amplification and overexpression in breast and ovarian cancers: evidence for the selection of cyclin D1 in breast and cyclin E in ovarian tumors. Int J Cancer 69(4):247–253

    Article  PubMed  CAS  Google Scholar 

  53. Seshadri R, Lee CS, Hui R et al (1996) Cyclin DI amplification is not associated with reduced overall survival in primary breast cancer but may predict early relapse in patients with features of good prognosis. Clin Cancer Res 2(7):1177–1184

    PubMed  CAS  Google Scholar 

  54. Bieche I, Olivi M, Nogues C et al (2002) Prognostic value of CCND1 gene status in sporadic breast tumours, as determined by real-time quantitative PCR assays. Br J Cancer 86(4):580–586

    Article  PubMed  CAS  Google Scholar 

  55. Kenny FS, Willsher PC, Gee JM et al (2001) Change in expression of ER, bcl-2 and MIB1 on primary tamoxifen and relation to response in ER positive breast cancer. Breast Cancer Res Treat 65(2):135–144

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was in part funded by the Breast Cancer Campaign and Breakthrough Breast Cancer. SE and MA are funded by the Egyptian culture bureau.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jorge S. Reis-Filho or Ian O. Ellis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsheikh, S., Green, A.R., Aleskandarany, M.A. et al. CCND1 amplification and cyclin D1 expression in breast cancer and their relation with proteomic subgroups and patient outcome. Breast Cancer Res Treat 109, 325–335 (2008). https://doi.org/10.1007/s10549-007-9659-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9659-8

Keywords

Navigation