Skip to main content

Natural and Modified Promoters for Tailored Metabolic Engineering of the Yeast Saccharomyces cerevisiae

  • Protocol
  • First Online:
Yeast Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1152))

Abstract

The ease of highly sophisticated genetic manipulations in the yeast Saccharomyces cerevisiae has initiated numerous initiatives towards development of metabolically engineered strains for novel applications beyond its traditional use in brewing, baking, and wine making. In fact, baker’s yeast has become a key cell factory for the production of various bulk and fine chemicals. Successful metabolic engineering requires fine-tuned adjustments of metabolic fluxes and coordination of multiple pathways within the cell. This has mostly been achieved by controlling gene expression at the transcriptional level, i.e., by using promoters with appropriate strengths and regulatory properties. Here we present an overview of natural and modified promoters, which have been used in metabolic pathway engineering of S. cerevisiae. Recent developments in creating promoters with tailor-made properties are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hubmann G, Guillouet S, Nevoigt E (2011) Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae. Appl Environ Microbiol 77(17):5857–5867. doi:AEM.05338-11 [pii] 10.1128/AEM.05338-11

    Article  CAS  Google Scholar 

  2. Blount BA, Weenink T, Ellis T (2012) Construction of synthetic regulatory networks in yeast. FEBS Lett 586(15):2112–2121. doi:10.1016/j.febslet.2012.01.053

    Article  CAS  Google Scholar 

  3. Edwards SR, Wandless TJ (2010) Dicistronic regulation of fluorescent proteins in the budding yeast Saccharomyces cerevisiae. Yeast 27(4):229–236. doi:10.1002/yea.1744

    CAS  Google Scholar 

  4. Hahn S, Young ET (2011) Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 189(3):705–736. doi:189/3/705 [pii] 10.1534/genetics.111.127019

    Article  CAS  Google Scholar 

  5. Juven-Gershon T, Kadonaga JT (2010) Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev Biol 339(2):225–229. doi:S0012-1606(09)01116-6 [pii] 10.1016/j.ydbio.2009.08.009

    Article  CAS  Google Scholar 

  6. Struhl K (1986) Constitutive and inducible Saccharomyces cerevisiae promoters: evidence for two distinct molecular mechanisms. Mol Cell Biol 6(11):3847–3853

    CAS  Google Scholar 

  7. Basehoar AD, Zanton SJ, Pugh BF (2004) Identification and distinct regulation of yeast TATA box-containing genes. Cell 116(5):699–709. doi:S0092867404002053 [pii]

    Article  CAS  Google Scholar 

  8. Sugihara F, Kasahara K, Kokubo T (2011) Highly redundant function of multiple AT-rich sequences as core promoter elements in the TATA-less RPS5 promoter of Saccharomyces cerevisiae. Nucleic Acids Res 39(1):59–75. doi:gkq741 [pii] 10.1093/nar/gkq741

    Article  CAS  Google Scholar 

  9. Rando OJ, Winston F (2012) Chromatin and transcription in yeast. Genetics 190(2):351–387. doi:10.1534/genetics.111.132266

    Article  CAS  Google Scholar 

  10. Tirosh I, Barkai N (2008) Two strategies for gene regulation by promoter nucleosomes. Genome Res 18(7):1084–1091. doi:gr.076059.108 [pii] 10.1101/gr.076059.108

    Article  CAS  Google Scholar 

  11. Mosch HU, Graf R, Braus GH (1992) Sequence-specific initiator elements focus initiation of transcription to distinct sites in the yeast TRP4 promoter. EMBO J 11(12):4583–4590

    CAS  Google Scholar 

  12. Yang C, Bolotin E, Jiang T, Sladek FM, Martinez E (2007) Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters. Gene 389(1):52–65. doi:S0378-1119(06)00623-8 [pii] 10.1016/j.gene.2006.09.029

    Article  CAS  Google Scholar 

  13. Lynch M, Sung W, Morris K, Coffey N, Landry CR, Dopman EB, Dickinson WJ, Okamoto K, Kulkarni S, Hartl DL, Thomas WK (2008) A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc Natl Acad Sci U S A 105(27):9272–9277. doi:10.1073/pnas.0803466105

    Article  CAS  Google Scholar 

  14. Lee TH, Maheshri N (2012) A regulatory role for repeated decoy transcription factor binding sites in target gene expression. Molecular systems biology 8:576. doi:10.1038/msb.2012.7

    Article  Google Scholar 

  15. Ptashne M, Gann A (1997) Transcriptional activation by recruitment. Nature 386(6625):569–577. doi:10.1038/386569a0

    Article  CAS  Google Scholar 

  16. Guarente L (1987) Regulatory proteins in yeast. Annu Rev Genet 21:425–452. doi:10.1146/annurev.ge.21.120187.002233

    Article  CAS  Google Scholar 

  17. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431(7004):99–104. doi:10.1038/nature02800 nature02800 [pii]

    Article  CAS  Google Scholar 

  18. Struhl K (1989) Molecular mechanisms of transcriptional regulation in yeast. Annu Rev Biochem 58:1051–1077. doi:10.1146/annurev.bi.58.070189.005155

    Article  CAS  Google Scholar 

  19. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34((Web Server issue)):W369–W373. doi:34/suppl_2/W369 [pii] 10.1093/nar/gkl198

    Article  CAS  Google Scholar 

  20. Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov AV, Frith MC, Fu Y, Kent WJ, Makeev VJ, Mironov AA, Noble WS, Pavesi G, Pesole G, Regnier M, Simonis N, Sinha S, Thijs G, van Helden J, Vandenbogaert M, Weng Z, Workman C, Ye C, Zhu Z (2005) Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol 23(1):137–144. doi:nbt1053 [pii] 10.1038/nbt1053

    Article  CAS  Google Scholar 

  21. Reid JE, Evans KJ, Dyer N, Wernisch L, Ott S (2010) Variable structure motifs for transcription factor binding sites. BMC Genomics 11:30. doi:1471-2164-11-30 [pii] 10.1186/1471-2164-11-30

    Article  Google Scholar 

  22. Hu M, Yu J, Taylor JM, Chinnaiyan AM, Qin ZS (2010) On the detection and refinement of transcription factor binding sites using ChIP-Seq data. Nucleic Acids Res 38(7):2154–2167. doi:gkp1180 [pii] 10.1093/nar/gkp1180

    Article  CAS  Google Scholar 

  23. Johnston M, Davis RW (1984) Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol Cell Biol 4(8):1440–1448

    CAS  Google Scholar 

  24. West RW Jr, Yocum RR, Ptashne M (1984) Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: location and function of the upstream activating sequence UASG. Mol Cell Biol 4(11):2467–2478

    CAS  Google Scholar 

  25. Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Munster S, Camblong J, Guffanti E, Stutz F, Huber W, Steinmetz LM (2009) Bidirectional promoters generate pervasive transcription in yeast. Nature 457(7232):1033–1037. doi:nature07728 [pii] 10.1038/nature07728

    Article  CAS  Google Scholar 

  26. Neil H, Malabat C, d’Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacquier A (2009) Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457(7232):1038–1042. doi:nature07747 [pii] 10.1038/nature07747

    Article  CAS  Google Scholar 

  27. DeMarini DJ, Carlin EM, Livi GP (2001) Constitutive promoter modules for PCR-based gene modification in Saccharomyces cerevisiae. Yeast 18(8):723–728. doi:10.1002/yea.721

    Article  CAS  Google Scholar 

  28. Monfort A, Finger S, Sanz P, Prieto JA (1999) Evaluation of different promoters for the efficient production of heterologous proteins in baker’s yeast. Biotechnology Letters 21 (3):225–229. doi: 10.1023/A:1005467912623

    Google Scholar 

  29. Mumberg D, Muller R, Funk M (1994) Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res 22(25):5767–5768

    Article  CAS  Google Scholar 

  30. Partow S, Siewers V, Bjorn S, Nielsen J, Maury J (2010) Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27(11):955–964. doi:10.1002/yea.1806

    Article  CAS  Google Scholar 

  31. Sun J, Shao Z, Zhao H, Nair N, Wen F, Xu JH (2012) Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnol Bioeng 109(8):2082–2092. doi:10.1002/bit.24481

    Article  CAS  Google Scholar 

  32. Da Silva NA, Srikrishnan S (2012) Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res 12(2):197–214. doi:10.1111/j.1567-1364.2011.00769.x

    Article  Google Scholar 

  33. Lu C, Jeffries T (2007) Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol 73(19):6072–6077. doi:AEM.00955-07 [pii] 10.1128/AEM.00955-07

    Article  CAS  Google Scholar 

  34. Campbell RN, Leverentz MK, Ryan LA, Reece RJ (2008) Metabolic control of transcription: paradigms and lessons from Saccharomyces cerevisiae. The Biochemical journal 414(2):177–187. doi:10.1042/BJ20080923

    Article  CAS  Google Scholar 

  35. Maya D, Quintero MJ, de la Cruz M-CM, Chavez S (2008) Systems for applied gene control in Saccharomyces cerevisiae. Biotechnol Lett 30(6):979–987. doi:10.1007/s10529-008-9647-z

    Article  CAS  Google Scholar 

  36. Johnston M (1987) A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol Rev 51(4):458–476

    CAS  Google Scholar 

  37. Napp SJ, Da Silva NA (1994) Enhanced productivity through gratuitous induction in recombinant yeast fermentations. Biotechnol Prog 10(1):125–128. doi:10.1021/bp00025a015

    Article  CAS  Google Scholar 

  38. Hawkins KM, Smolke CD (2006) The regulatory roles of the galactose permease and kinase in the induction response of the GAL network in Saccharomyces cerevisiae. J Biol Chem 281(19):13485–13492. doi:M512317200 [pii] 10.1074/jbc.M512317200

    Article  CAS  Google Scholar 

  39. Hawkins KM, Smolke CD (2008) Production of benzylisoquinoline alkaloids in Saccharo-myces cerevisiae. Nat Chem Biol 4(9):564–573. doi:nchembio.105 [pii] 10.1038/nchembio.105

    Google Scholar 

  40. Katsuyama Y, Miyahisa I, Funa N, Horinouchi S (2007) One-pot synthesis of genistein from tyrosine by coincubation of genetically engineered Escherichia coli and Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 73(5):1143–1149. doi:10.1007/s00253-006-0568-2

    Article  CAS  Google Scholar 

  41. Lindahl AL, Olsson ME, Mercke P, Tollbom O, Schelin J, Brodelius M, Brodelius PE (2006) Production of the artemisinin precursor amorpha-4,11-diene by engineered Saccharomyces cerevisiae. Biotechnol Lett 28(8):571–580. doi:10.1007/s10529-006-0015-6

    Article  CAS  Google Scholar 

  42. Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 7:36. doi:1475-2859-7-36 [pii] 10.1186/1475-2859-7-36

    Article  Google Scholar 

  43. Finley RL Jr, Zhang H, Zhong J, Stanyon CA (2002) Regulated expression of proteins in yeast using the MAL61-62 promoter and a mating scheme to increase dynamic range. Gene 285(1–2):49–57. doi:S0378111902004201 [pii]

    Article  CAS  Google Scholar 

  44. Park YS, Shiba S, Lijima S, Kobayashi T, Hishinuma F (1993) Comparison of three different promoter systems for secretory alpha-amylase production in fed-batch cultures of recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 41(9):854–861. doi:10.1002/bit.260410904

    Article  CAS  Google Scholar 

  45. Furst P, Hu S, Hackett R, Hamer D (1988) Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell 55(4):705–717. doi:0092-8674(88)90229-2 [pii]

    Article  CAS  Google Scholar 

  46. Huibregtse JM, Engelke DR, Thiele DJ (1989) Copper-induced binding of cellular factors to yeast metallothionein upstream activation sequences. Proc Natl Acad Sci USA 86(1):65–69

    Article  CAS  Google Scholar 

  47. Koller A, Valesco J, Subramani S (2000) The CUP1 promoter of Saccharomyces cerevisiae is inducible by copper in Pichia pastoris. Yeast 16(7):651–656. doi:10.1002/(SICI)1097-0061(200005)16:7<651::AID-YEA580>3.0.CO;2-F [pii] 10.1002/(SICI)1097-0061(200005)16:7<651::AID-YEA580>3.0.CO;2-F

    Article  CAS  Google Scholar 

  48. Macreadie IG (1990) Yeast vectors for cloning and copper-inducible expression of foreign genes. Nucleic Acids Res 18(4):1078

    Article  CAS  Google Scholar 

  49. Farhi M, Dudareva N, Masci T, Weiss D, Vainstein A, Abeliovich H (2006) Synthesis of the food flavoring methyl benzoate by genetically engineered Saccharomyces cerevisiae. J Biotechnol 122(3):307–315. doi:S0168-1656(05)00764-9 [pii] 10.1016/j.jbiotec.2005.12.007

    Article  CAS  Google Scholar 

  50. Lee W, Dasilva NA (2006) Application of sequential integration for metabolic engineering of 1,2-propanediol production in yeast. Metab Eng 8(1):58–65. doi:S1096-7176(05)00071-6 [pii] 10.1016/j.ymben.2005.09.001

    Article  CAS  Google Scholar 

  51. Mountain HA, Bystrom AS, Larsen JT, Korch C (1991) Four major transcriptional responses in the methionine/threonine biosynthetic pathway of Saccharomyces cerevisiae. Yeast 7(8):781–803. doi:10.1002/yea.320070804

    Article  CAS  Google Scholar 

  52. Lee KM, DaSilva NA (2005) Evaluation of the Saccharomyces cerevisiae ADH2 promoter for protein synthesis. Yeast 22(6):431–440. doi:10.1002/yea.1221

    Article  CAS  Google Scholar 

  53. Cunha AF, Missawa SK, Gomes LH, Reis SF, Pereira GA (2006) Control by sugar of Saccharomyces cerevisiae flocculation for industrial ethanol production. FEMS Yeast Res 6(2):280–287. doi:FYR038 [pii] 10.1111/j.1567-1364.2006.00038.x

    Article  CAS  Google Scholar 

  54. Cardona F, Carrasco P, Perez-Ortin JE, del Olmo M, Aranda A (2007) A novel approach for the improvement of stress resistance in wine yeasts. Int J Food Microbiol 114(1):83–91. doi:S0168-1605(06)00587-3 [pii] 10.1016/j.ijfoodmicro.2006.10.043

    Article  CAS  Google Scholar 

  55. Sledziewski AZ, Bell A, Yip C, Kelsay K, Grant FJ, MacKay VL (1990) Superimposition of temperature regulation on yeast promoters. Methods Enzymol 185:351–366. doi:0076-6879(90)85031-I [pii]

    Article  CAS  Google Scholar 

  56. Rine J, Herskowitz I (1987) Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116(1):9–22

    CAS  Google Scholar 

  57. Kobayashi H, Nakazawa N, Harashima S, Oshima Y (1990) A system for temperature-controlled expression of a foreign gene with dual mode in Saccharomyces cerevisiae. J Ferment Bioeng 69(6):322–327. doi:10.1016/0922-338X(90)90237-Q

    Article  CAS  Google Scholar 

  58. Silva NAD, Bailey JE (1989) Construction and characterization of a temperature-sensitive expression system in recombinant yeast. Biotechnol Prog 5(1):18–26. doi:10.1002/btpr.5420050107

    Article  Google Scholar 

  59. Cheng C, Yang S-T (1996) Dynamics and modeling of temperature-regulated gene product expression in recombinant yeast fermentation. Biotechnol Bioeng 50(6):663–674. doi:10.1002/(sici)1097-0290(19960620)50:6<663::aid-bit7>3.0.co;2-i

    Article  CAS  Google Scholar 

  60. Abe F (2007) Induction of DAN/TIR yeast cell wall mannoprotein genes in response to high hydrostatic pressure and low temperature. FEBS Lett 581(25):4993–4998. doi:10.1016/j.febslet.2007.09.039

    Article  CAS  Google Scholar 

  61. Cohen BD, Sertil O, Abramova NE, Davies KJ, Lowry CV (2001) Induction and repression of DAN1 and the family of anaerobic mannoprotein genes in Saccharomyces cerevisiae occurs through a complex array of regulatory sites. Nucleic Acids Res 29(3):799–808

    Article  CAS  Google Scholar 

  62. Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30(6):e23

    Article  CAS  Google Scholar 

  63. Wach A, Brachat A, Pohlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10(13):1793–1808

    Article  CAS  Google Scholar 

  64. Becskei A, Seraphin B, Serrano L (2001) Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J 20(10):2528–2535. doi:10.1093/emboj/20.10.2528

    Article  CAS  Google Scholar 

  65. Romero-Santacreu L, Orozco H, Garre E, Alepuz P (2010) The bidirectional cytomegalovirus immediate/early promoter is regulated by Hog1 and the stress transcription factors Sko1 and Hot1 in yeast. Molecular genetics and genomics: MGG 283(5):511–518. doi:10.1007/s00438-010-0537-4

    Article  CAS  Google Scholar 

  66. Bruening W, Giasson B, Mushynski W, Durham HD (1998) Activation of stress-activated MAP protein kinases up-regulates expression of transgenes driven by the cytomegalovirus immediate/early promoter. Nucleic Acids Res 26(2):486–489

    Article  CAS  Google Scholar 

  67. Blazeck J, Alper HS (2013) Promoter engineering: recent advances in controlling transcription at the most fundamental level. Biotechnol J 8(1):46–58. doi:10.1002/biot.201200120

    Article  CAS  Google Scholar 

  68. Hammer K, Mijakovic I, Jensen PR (2006) synthetic promoter libraries-tuning of gene expression. Trends Biotechnol 24(2):53–55. doi:S0167-7799(05)00326-4 [pii] 10.1016/j.tibtech.2005.12.003

    Article  CAS  Google Scholar 

  69. Jeppsson M, Johansson B, Jensen PR, Hahn-Hagerdal B, Gorwa-Grauslund MF (2003) The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast 20(15):1263–1272. doi:10.1002/yea.1043

    Article  CAS  Google Scholar 

  70. Ruohonen L, Aalto MK, Keranen S (1995) Modifications to the ADH1 promoter of Saccharomyces cerevisiae for efficient production of heterologous proteins. J Biotechnol 39(3):193–203. doi:016816569500024 K [pii]

    Article  CAS  Google Scholar 

  71. Ruohonen L, Penttila M, Keranen S (1991) Optimization of Bacillus alpha-amylase production by Saccharomyces cerevisiae. Yeast 7(4):337–346. doi:10.1002/yea.320070404

    Article  CAS  Google Scholar 

  72. Blazeck J, Garg R, Reed B, Alper HS (2012) Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters. Biotechnol Bioeng 109(11):2884–2895. doi:10.1002/bit.24552

    Article  CAS  Google Scholar 

  73. Blount BA, Weenink T, Vasylechko S, Ellis T (2012) Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology. PLoS One 7(3):e33279. doi:10.1371/journal.pone.0033279 PONE-D-11-25479 [pii]

    Article  CAS  Google Scholar 

  74. Murphy KF, Balazsi G, Collins JJ (2007) Combinatorial promoter design for engineering noisy gene expression. Proc Natl Acad Sci U S A 104(31):12726–12731. doi:0608451104 [pii] 10.1073/pnas.0608451104

    Article  CAS  Google Scholar 

  75. Raijman D, Shamir R, Tanay A (2008) Evolution and selection in yeast promoters: analyzing the combined effect of diverse transcription factor binding sites. PLoS Comput Biol 4(1):e7. doi:07-PLCB-RA-0237 [pii] 10.1371/journal.pcbi.0040007

    Article  Google Scholar 

  76. Dingermann T, Frank-Stoll U, Werner H, Wissmann A, Hillen W, Jacquet M, Marschalek R (1992) RNA polymerase III catalysed transcription can be regulated in Saccharomyces cerevisiae by the bacterial tetracycline repressor-operator system. EMBO J 11(4):1487–1492

    CAS  Google Scholar 

  77. Gari E, Piedrafita L, Aldea M, Herrero E (1997) A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast 13(9):837–848. doi:10.1002/(SICI)1097-0061(199707)13:9<837::AID-YEA145>3.0.CO;2-T [pii] 10.1002/(SICI)1097-0061(199707)13:9<837::AID-YEA145>3.0.CO;2-T

    Article  CAS  Google Scholar 

  78. Belli G, Gari E, Aldea M, Herrero E (1998) Functional analysis of yeast essential genes using a promoter-substitution cassette and the tetracycline-regulatable dual expression system. Yeast 14(12):1127–1138. doi:10.1002/(SICI)1097-0061(19980915)14:12<1127::AID-YEA300>3.0.CO;2-# [pii] 10.1002/(SICI)1097-0061(19980915)14:12<1127::AID-YEA300>3.0.CO;2-#

    Article  CAS  Google Scholar 

  79. Belli G, Gari E, Piedrafita L, Aldea M, Herrero E (1998) An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. Nucleic Acids Res 26(4):942–947. doi:gkb206 [pii]

    Article  CAS  Google Scholar 

  80. Lewis M (2005) The lac repressor. Comptes rendus biologies 328(6):521–548. doi:10.1016/j.crvi.2005.04.004

    Article  CAS  Google Scholar 

  81. Scrable H, Stambrook PJ (1997) Activation of the lac repressor in the transgenic mouse. Genetics 147(1):297–304

    CAS  Google Scholar 

  82. Ellis T, Wang X, Collins JJ (2009) Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat Biotechnol 27(5):465–471. doi:10.1038/nbt.1536

    Article  CAS  Google Scholar 

  83. Purvis IJ, Chotai D, Dykes CW, Lubahn DB, French FS, Wilson EM, Hobden AN (1991) An androgen-inducible expression system for Saccharomyces cerevisiae. Gene 106(1):35–42. doi:0378-1119(91)90563-Q [pii]

    Article  CAS  Google Scholar 

  84. Shimizu-Sato S, Huq E, Tepperman JM, Quail PH (2002) A light-switchable gene promoter system. Nat Biotechnol 20(10):1041–1044. doi:10.1038/nbt734 nbt734 [pii]

    Article  CAS  Google Scholar 

  85. Louvion JF, Havaux-Copf B, Picard D (1993) Fusion of GAL4-VP16 to a steroid-binding domain provides a tool for gratuitous induction of galactose-responsive genes in yeast. Gene 131(1):129–134. doi:0378-1119(93)90681-R [pii]

    Article  CAS  Google Scholar 

  86. McIsaac RS, Silverman SJ, McClean MN, Gibney PA, Macinskas J, Hickman MJ, Petti AA, Botstein D (2011) Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae. Mol Biol Cell 22(22):4447–4459. doi:mbc.E11-05-0466 [pii] 10.1091/mbc.E11-05-0466

    Article  CAS  Google Scholar 

  87. Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Molecular systems biology 2(2006):0028. doi:10.1038/msb4100073

    Google Scholar 

  88. Kay S, Hahn S, Marois E, Hause G, Bonas U (2007) A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318(5850):648–651. doi:318/5850/648 [pii] 10.1126/science.1144956

    Article  CAS  Google Scholar 

  89. Scholze H, Boch J (2011) TAL effectors are remote controls for gene activation. Current opinion in microbiology 14(1):47–53. doi:10.1016/j.mib.2010.12.001

    Article  CAS  Google Scholar 

  90. Jensen PR, Hammer K (1998) Artificial promoters for metabolic optimization. Biotechnol Bioeng 58(2–3):191–195. doi:10.1002/(SICI)1097-0290(19980420)58:2/3<191::AID-BIT11>3.0.CO;2-G [pii]

    Article  CAS  Google Scholar 

  91. Jensen PR, Hammer K (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64(1):82–87

    CAS  Google Scholar 

  92. Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A 102(36):12678–12683. doi:0504604102 [pii] 10.1073/pnas.0504604102

    Article  CAS  Google Scholar 

  93. Tyo KE, Nevoigt E, Stephanopoulos G (2011) Directed evolution of promoters and tandem gene arrays for customizing RNA synthesis rates and regulation. Methods Enzymol 497:135–155. doi:B978-0-12-385075-1.00006-8 [pii] 10.1016/B978-0-12-385075-1.00006-8

    Article  CAS  Google Scholar 

  94. Nevoigt E, Kohnke J, Fischer CR, Alper H, Stahl U, Stephanopoulos G (2006) Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Appl Environ Microbiol 72(8):5266–5273. doi:72/8/5266 [pii] 10.1128/AEM.00530-06

    Article  CAS  Google Scholar 

  95. Nevoigt E, Fischer C, Mucha O, Matthaus F, Stahl U, Stephanopoulos G (2007) Engineering promoter regulation. Biotechnol Bioeng 96(3):550–558. doi:10.1002/bit.21129

    Article  CAS  Google Scholar 

  96. Bjorkqvist S, Ansell R, Adler L, Liden G (1997) Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Appl Environ Microbiol 63(1):128–132

    CAS  Google Scholar 

  97. Nissen TL, Hamann CW, Kielland-Brandt MC, Nielsen J, Villadsen J (2000) Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast 16(5):463–474

    Article  CAS  Google Scholar 

  98. Daran-Lapujade P, Rossell S, van Gulik WM, Luttik MA, de Groot MJ, Slijper M, Heck AJ, Daran JM, de Winde JH, Westerhoff HV, Pronk JT, Bakker BM (2007) The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels. Proc Natl Acad Sci U S A 104(40):15753–15758. doi:10.1073/pnas.0707476104

    Article  CAS  Google Scholar 

  99. Mumberg D, Muller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156(1):119–122

    Article  CAS  Google Scholar 

  100. Hauf J, Zimmermann FK, Muller S (2000) Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme and microbial technology 26(9–10):688–698

    Article  CAS  Google Scholar 

  101. Shen MW, Fang F, Sandmeyer S, Da Silva NA (2012) Development and characterization of a vector set with regulated promoters for systematic metabolic engineering in Saccharomyces cerevisiae. Yeast 29(12):495–503. doi:10.1002/yea.2930

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Nevoigt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hubmann, G., Thevelein, J.M., Nevoigt, E. (2014). Natural and Modified Promoters for Tailored Metabolic Engineering of the Yeast Saccharomyces cerevisiae . In: Mapelli, V. (eds) Yeast Metabolic Engineering. Methods in Molecular Biology, vol 1152. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0563-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0563-8_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0562-1

  • Online ISBN: 978-1-4939-0563-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics