Skip to main content
Log in

Systems for applied gene control in Saccharomyces cerevisiae

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Saccharomyces cerevisiae is frequently used in biotechnology, including fermentative processes in food production, heterologous protein production and high throughput developments for biomedicine. Accurate expression of selected genes is essential for all these areas. Systems that can be regulated are particularly useful because they allow controlling the timing and levels of gene expression. We examine here new expression systems that have been described, including improvements of classical ones and new strategies of artificial gene control that have been applied in functional genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Antoniukas L, Grammel H, Reichl U (2006) Production of hantavirus Puumala nucleocapsid protein in Saccharomyces cerevisiae for vaccine and diagnostics. J Biotechnol 124:347–362

    Article  PubMed  CAS  Google Scholar 

  • Astromskas E, Cohn M (2007) Tools and methods for genetic analysis of Saccharomyces castellii. Yeast 24:499–509

    Article  PubMed  CAS  Google Scholar 

  • Belli G, Gari E, Piedrafita L et al (1998) An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. Nucleic Acids Res 26:942–947

    Article  PubMed  CAS  Google Scholar 

  • Bonoli M, Graziola M, Poggi V et al (2006) RNA complementary to the 5′ UTR of mRNA triggers effective silencing in Saccharomyces cerevisiae. Biochem Biophys Res Commun 339:1224–1231

    PubMed  CAS  Google Scholar 

  • Boyer J, Badis G, Fairhead C et al (2004) Large-scale exploration of growth inhibition caused by overexpression of genomic fragments in Saccharomyces cerevisiae. Genome Biol 5:R72. doi: 10.1186/gb-2004-5-9-r72

  • Camattari A, Bianchi MM, Branduardi P et al (2007) Induction by hypoxia of heterologous-protein production with the KlPDC1 promoter in yeasts. Appl Environ Microbiol 73:922–929

    Article  PubMed  CAS  Google Scholar 

  • Cardona F, Carrasco P, Perez-Ortin JE et al (2007) A novel approach for the improvement of stress resistance in wine yeasts. Int J Food Microbiol 114:83–91

    Article  PubMed  CAS  Google Scholar 

  • Cunha AF, Missawa SK, Gomes LH et al (2006) Control by sugar of Saccharomyces cerevisiae flocculation for industrial ethanol production. FEMS Yeast Res 6:280–287

    Article  PubMed  CAS  Google Scholar 

  • Dixon C, Mathias N, Zweig RM et al (2005) Alpha-synuclein targets the plasma membrane via the secretory pathway and induces toxicity in yeast. Genetics 170:47–59

    Article  PubMed  CAS  Google Scholar 

  • Farhi M, Dudareva N, Masci T et al (2006) Synthesis of the food flavoring methyl benzoate by genetically engineered Saccharomyces cerevisiae. J Biotechnol 122:307–315

    Article  PubMed  CAS  Google Scholar 

  • Finley RL Jr, Zhang H, Zhong J et al (2002) Regulated expression of proteins in yeast using the MAL61-62 promoter and a mating scheme to increase dynamic range. Gene 285:49–57

    Article  PubMed  CAS  Google Scholar 

  • Funk M, Niedenthal R, Mumberg D et al (2002) Vector systems for heterologous expression of proteins in Saccharomyces cerevisiae. Methods Enzymol 350:248–257

    Article  PubMed  CAS  Google Scholar 

  • Gari E, Piedrafita L, Aldea M et al (1997) A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast 13:837–848

    Article  PubMed  CAS  Google Scholar 

  • Geiser JR (2005) Recombinational cloning vectors for regulated expression in Saccharomyces cerevisiae. Biotechniques 38:378–382

    PubMed  CAS  Google Scholar 

  • Holz C, Lang C (2004) High-throughput expression in microplate format in Saccharomyces cerevisiae. Methods Mol Biol 267:267–276

    PubMed  CAS  Google Scholar 

  • Jansen G, Wu C, Schade B et al (2005) Drag&Drop cloning in yeast. Gene 344:43–51

    Article  PubMed  CAS  Google Scholar 

  • Juozapaitis M, Serva A, Zvirbliene A et al (2007) Generation of henipavirus nucleocapsid proteins in yeast Saccharomyces cerevisiae. Virus Res 124:95–102

    Article  PubMed  CAS  Google Scholar 

  • Katsuyama Y, Miyahisa I, Funa N et al (2007) One-pot synthesis of genistein from tyrosine by coincubation of genetically engineered Escherichia coli and Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 73:1143–1149

    Article  PubMed  CAS  Google Scholar 

  • Kim MD, Lee TH, Lim HK et al (2004) Production of antithrombotic hirudin in GAL1-disrupted Saccharomyces cerevisiae. Appl Microbiol Biotechnol 65:259–262

    PubMed  CAS  Google Scholar 

  • Koller A, Valesco J, Subramani S (2000) The CUP1 promoter of Saccharomyces cerevisiae is inducible by copper in Pichia pastoris. Yeast 16:651–656

    Article  PubMed  CAS  Google Scholar 

  • Lee KM, Da Silva NA (2005) Evaluation of the Saccharomyces cerevisiae ADH2 promoter for protein synthesis. Yeast 22:431–440

    Article  PubMed  CAS  Google Scholar 

  • Lee TH, Kim MD, Shin SY et al (2006) Disruption of hexokinase II (HXK2) partly relieves glucose repression to enhance production of human kringle fragment in gratuitous recombinant Saccharomyces cerevisiae. J Biotechnol 126:562–567

    Article  PubMed  CAS  Google Scholar 

  • Lesser CF, Miller SI (2001) Expression of microbial virulence proteins in Saccharomyces cerevisiae models mammalian infection. EMBO J 20:1840–1849

    Article  PubMed  CAS  Google Scholar 

  • Li L, Shen S, Jiang P et al (2005) Usage of an intronic promoter for stable gene expression in Saccharomyces cerevisiae. Lett Appl Microbiol 40:347–352

    Article  PubMed  CAS  Google Scholar 

  • Li X, Millson SH, Coker RD et al (2006) Cloning and expression of Penicillium minioluteum dextranase in Saccharomyces cerevisiae and its exploitation as a reporter in the detection of mycotoxins. Biotechnol Lett 28:1955–1964

    Article  PubMed  CAS  Google Scholar 

  • Lindahl AL et al (2006) Production of the artemisinin precursor amorpha-4,11-diene by engineered Saccharomyces cerevisiae. Biotechnol Lett 28:571–580

    Article  PubMed  CAS  Google Scholar 

  • Louvion JF, Havaux-Copf B, Picard D (1993) Fusion of GAL4-VP16 to a steroid-binding domain provides a tool for gratuitous induction of galactose-responsive genes in yeast. Gene 131:129–134

    Article  PubMed  CAS  Google Scholar 

  • Mnaimneh S et al (2004) Exploration of essential gene functions via titratable promoter alleles. Cell 118:31–44

    Article  PubMed  CAS  Google Scholar 

  • Mumberg D, Muller R, Funk M (1994) Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res 22:5767–5768

    Article  PubMed  CAS  Google Scholar 

  • Napp SJ, Da Silva NA (1994) Enhanced productivity through gratuitous induction in recombinant yeast fermentations. Biotechnol Prog 10:125–128

    Article  PubMed  CAS  Google Scholar 

  • Outeiro TF, Giorgini F (2006) Yeast as a drug discovery platform in Huntington’s and Parkinson’s diseases. Biotechnol J 1:258–269

    Article  PubMed  CAS  Google Scholar 

  • Pecota DC, Da Silva NA (2005) Evaluation of the tetracycline promoter system for regulated gene expression in Kluyveromyces marxianus. Biotechnol Bioeng 92:117–123

    Article  PubMed  CAS  Google Scholar 

  • Porro D, Sauer M, Branduardi P et al (2005) Recombinant protein production in yeasts. Mol Biotechnol 31:245–259

    Article  PubMed  CAS  Google Scholar 

  • Quintero MJ, Maya D, Arevalo-Rodriguez M et al (2007) An improved system for estradiol-dependent regulation of gene expression in yeast. Microb Cell Fact 6:10. doi: 10.1186/1475-2859-6-10

  • Rabin SD, Hauser AR (2003) Pseudomonas aeruginosa ExoU, a toxin transported by the type III secretion system, kills Saccharomyces cerevisiae. Infect Immun 71:4144–4150

    Article  PubMed  CAS  Google Scholar 

  • Saida F, Uzan M, Lallemand J et al (2003) New system for positive selection of recombinant plasmids and dual expression in yeast and bacteria based on the restriction ribonuclease RegB. Biotechnol Prog 19:727–733

    Article  PubMed  CAS  Google Scholar 

  • Sidorovitch V, Niculae A, Kan N et al (2002) Expression of mammalian Rab Escort protein-1 and -2 in yeast Saccharomyces cerevisiae. Protein Expr Purif 26:50–58

    Article  PubMed  CAS  Google Scholar 

  • Stagoj MN, Comino A, Komel R (2006) A novel GAL recombinant yeast strain for enhanced protein production. Biomol Eng 23:195–199

    Article  PubMed  CAS  Google Scholar 

  • Van Mullem V, Wery M, De Bolle X et al (2003) Construction of a set of Saccharomyces cerevisiae vectors designed for recombinational cloning. Yeast 20:739–746

    Article  PubMed  CAS  Google Scholar 

  • Volles MJ, Lansbury PT Jr (2007) Relationships between the sequence of alpha-synuclein and its membrane affinity, fibrillization propensity, and yeast toxicity. J Mol Biol 366:1510–1522

    Article  PubMed  CAS  Google Scholar 

  • Wang Z (2006) Controlled expression of recombinant genes and preparation of cell-free extracts in yeast. Methods Mol Biol 313:317–331

    PubMed  CAS  Google Scholar 

  • Wishart JA, Hayes A, Wardleworth L et al (2005) Doxycycline, the drug used to control the tet-regulatable promoter system, has no effect on global gene expression in Saccharomyces cerevisiae. Yeast 22:565–569

    Article  PubMed  CAS  Google Scholar 

  • Wishart JA, Osborn M, Gent ME et al (2006) The relative merits of the tetO2 and tetO7 promoter systems for the functional analysis of heterologous genes in yeast and a compilation of essential yeast genes with tetO2 promoter substitutions. Yeast 23:325–331

    Article  PubMed  CAS  Google Scholar 

  • Yin J, Li G, Ren X et al (2007) Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. J Biotechnol 127:335–347

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Osborn M, Gitsham P et al (2003) Using yeast to place human genes in functional categories. Gene 303:121–129

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry for Education and Science (FIT-010000-2003-110 and CIT-010000-2005-32), by the Andalusian Government (CVI271) and by Biomedal, SL. We thank Ángel Cebolla for his intellectual inputs and Miguel Arévalo-Rodríguez for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastián Chávez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maya, D., Quintero, M.J., de la Cruz Muñoz-Centeno, M. et al. Systems for applied gene control in Saccharomyces cerevisiae . Biotechnol Lett 30, 979–987 (2008). https://doi.org/10.1007/s10529-008-9647-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-008-9647-z

Keywords

Navigation