1 Introduction

In this work, we establish the oscillatory behavior of the nth-order neutral equation

$$ \bigl( rz^{ ( n-1 ) } \bigr) ^{\prime } ( \zeta ) + \int _{a}^{b}q ( \zeta ,s ) f \bigl( x \bigl( g ( \zeta ,s ) \bigr) \bigr) \,\mathrm{d}s=0, \quad \zeta \geq \zeta _{0}, $$
(1.1)

where α is a ratio of odd positive integers, n is an even integer, \(n\geq 2\),

$$ z ( \zeta ) =x^{\alpha } ( \zeta ) +p ( \zeta ) x \bigl( \sigma ( \zeta ) \bigr) . $$
(1.2)

Throughout this work, we assume that:

\(( H_{1} ) \) :

\(p, r\in C ( [ \zeta _{0}, \infty ) ) \), \(r ( \zeta ) >0\), \(r^{\prime } ( \zeta ) \geq 0\), and \(0\leq p ( \zeta ) <1\);

\(( H_{2} ) \) :

\(q\in C ( [ \zeta _{0}, \infty ) \times ( a,b ) ,\mathbb{R} ) \), \(q ( \zeta ,s ) \geq 0\), and

$$ \int _{\zeta _{0}}^{\infty }\frac{1}{r ( s ) }\,\mathrm{d}s= \infty ; $$
\(( H_{3} ) \) :

\(f\in C ( \mathbb{R} ,\mathbb{R} ) \), \(\vert f ( x ) \vert \geq k \vert x^{\alpha } \vert \) for \(x\neq 0\), and k is a positive constant;

\(( H_{4} ) \) :

\(\sigma \in C ( [ \zeta _{0},\infty ) , ( 0,\infty ) ) \), \(\sigma ( \zeta ) \leq \zeta \), and \(\lim_{\zeta \rightarrow \infty }\sigma ( \zeta ) =\infty \);

\(( H_{5} ) \) :

\(g\in C ( [ \zeta _{0}, \infty ) \times ( a,b ) ,\mathbb{R} ) \), \(g ( \zeta ,s ) \leq \zeta \), g has nonnegative partial derivatives, and \(\lim_{\zeta \rightarrow \infty }g ( \zeta ,s ) =\infty \).

By a solution of Eq. (1.1), we purpose a function \(x ( \zeta ) \in C ( [ \zeta _{k},\infty ) , \mathbb{R} ) \) for some \(\zeta _{k}\geq \zeta _{0}\) such that \(z ( \zeta ) \in C^{ ( n ) } ( [ \zeta _{k},\infty ) ,\mathbb{R} ) \) and \(( r ( \zeta ) z^{ ( n-1 ) } ( \zeta ) ) \in C^{1} ( [ \zeta _{k},\infty ) ,\mathbb{R} ) \) and satisfies Eq. (1.1) on \([ \zeta _{k},\infty ) \). If x is neither positive nor negative eventually, then \(x ( \zeta ) \) is called oscillatory, or it will be non-oscillatory.

The theory of oscillation of differential equation has been the subject of many papers [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37]. During the recent decades, a great amount of work has been done on development the oscillation theory of the nth-order equations with delay and advanced argument, see [4,5,6,7,8,9,10,11,12, 23, 25, 27, 28, 31,32,33,34,35,36,37]. In the following, we present some related examples:

In [36], Zhang et al. established the conditions of oscillation of the equation

$$ \bigl( r \bigl( x^{ ( n-1 ) } \bigr) ^{\alpha } \bigr) ^{\prime } ( \zeta ) +q ( \zeta ) f \bigl( x \bigl( g ( \zeta ) \bigr) \bigr) =0, $$
(1.3)

where \(f ( x ) =x^{\beta }\), β is a ratio of odd positive integers, \(\beta \leq \alpha \), and

$$ \int _{\zeta _{0}}^{\infty }r^{-1/\alpha } ( s ) \, \mathrm{d}s< \infty . $$
(1.4)

Moreover, in [35], some oscillation results have been presented, which improves the results in [36]. As well, Baculikova et al. in [8] studied the properties of oscillation of the solutions of equation (1.3) under conditions (1.4) and

$$ \int _{\zeta _{0}}^{\infty }r^{-1/\alpha } ( s ) \, \mathrm{d}s= \infty . $$
(1.5)

For more oscillation results about (1.3), see [3,4,5]. The asymptotic properties and oscillation of equation

$$ \bigl( r \bigl( y^{ ( n-1 ) } \bigr) ^{\alpha } \bigr) ^{\prime } ( \zeta ) +q ( \zeta ) f \bigl( x \bigl( g ( \zeta ) \bigr) \bigr) =0, $$

where \(y ( \zeta ) =x ( \zeta ) +p ( \zeta ) x ( \sigma ( \zeta ) ) \), have been considered in [7, 23, 32, 37].

In [31], the oscillatory behavior of the neutral differential equation

$$ \bigl( r \bigl( \vert x \vert ^{\gamma -1}x+px ( \sigma ) \bigr) ^{ ( n-1 ) } \bigr) ^{\prime } ( \zeta ) +q ( \zeta ) f \bigl( x \bigl( g ( \zeta ) \bigr) \bigr) =0, $$

where \(\gamma \geq 1\) is a real number, is established.

In this paper, by using the technique of comparison with first order delay equations and technique of Riccati transformation, we obtain a two different conditions ensure oscillation of solutions of this equation, which extend and improve results of [31]. Moreover, we establish some new criterion for oscillation of Eq. (1.1) by using an integral averages condition of Philos-type. We illustrate the importance of our results by presenting some examples.

During the following sections of our paper, we shall need the next definition and lemmas.

Definition 1

([29])

Let

$$ D_{0}= \bigl\{ ( \zeta ,s ) :\zeta >s>\zeta _{0} \bigr\} \quad \text{and} \quad D= \bigl\{ ( \zeta ,s ) :\zeta \geq s\geq \zeta _{0} \bigr\} . $$

Let H be a continuous real functions on D. It is said that H belongs to the function class ℑ, written by \(H\in \Im \), if

  1. (i)

    \(H ( \zeta ,\zeta) =0\) for \(\zeta \geq \zeta _{0}\), \(H ( \zeta ,s ) >0\) on \(D_{0}\);

  2. (ii)

    The partial derivative \(\partial H/\partial s\in C ( D_{0}, [ 0,\infty ) ) \) such that the condition

    $$ \frac{\partial H ( \zeta ,s ) }{\partial s}=-h(\zeta ,s)\sqrt{H ( \zeta ,s ), } $$

    for all \((\zeta ,s)\in D_{0}\) is satisfied for some \(h\in C ( D, \mathbb{R} ) \).

Lemma 1.1

([3])

Suppose that n be an even, \(w\in C^{n} ( [ \zeta _{0},\infty ) ) \), w of constant sign, \(w^{ ( n ) } ( \zeta ) \neq 0\) on \([ \zeta _{0},\infty ) \) and \(w ( \zeta ) w^{ ( n ) } ( \zeta ) \leq 0\). Then,

  1. (I)

    The derivatives \(w^{ ( i ) } ( \zeta ) , i=1,2,\ldots,n-1\), are of constant sign on \([ \zeta _{1},\infty ) \) for some \(\zeta _{1}\geq \zeta _{0}\);

  2. (II)

    There exists an odd integer \(l\in [ 1,n ) \), such that, for\(\ \zeta \geq \zeta _{1}\),

    $$ y ( \zeta ) y^{ ( i ) } ( \zeta ) >0 $$

    for all \(i=0,1,\ldots,l\) and

    $$ ( -1 ) ^{n+i+1}y ( \zeta ) y^{ ( i ) } ( \zeta ) >0 $$

    for all \(i=l+1,\ldots,n\).

Lemma 1.2

([3])

Let w be as in Lemma 1.1 and \(w^{ ( n-1 ) } ( \zeta ) w^{ ( n ) } ( \zeta ) \leq 0\) for \(\zeta \geq \zeta _{0}\). Then there exists a constant \(M>0\) such that

$$ \bigl\vert y ( \lambda \zeta ) \bigr\vert \geq M\zeta ^{n-1} \bigl\vert y^{ ( n-1 ) } ( \zeta ) \bigr\vert $$

for all large ζ.

Lemma 1.3

([3])

Let w be as in Lemma 1.1 and \(w^{ ( n-1 ) } ( \zeta ) w^{ ( n ) } ( \zeta ) \leq 0\) for \(\zeta \geq \zeta _{0}\). If \(\lim_{\zeta \rightarrow \infty }w ( \zeta ) \neq 0\), then for every \(\mu \in ( 0,1 ) \) there exists a \(\zeta _{\mu }\geq \zeta _{0}\) such that

$$ \bigl\vert y ( \zeta ) \bigr\vert \geq \frac{\mu }{ ( n-1 ) !}\zeta ^{n-1} \bigl\vert y^{ ( n-1 ) } ( \zeta ) \bigr\vert $$

for all \(\zeta \geq \zeta _{\mu }\).

2 Main results

Lemma 2.1

Assume that \(x ( \zeta ) \) is an eventually positive solution of equation (1.1). If

$$ \omega ( \zeta ) :=\rho ( \zeta ) \frac{r ( \zeta ) z^{ ( n-1 ) } ( \zeta ) }{z ( \lambda g ( \zeta ,a ) ) }, $$

where \(\rho \in C^{\prime } ( [ \zeta _{0},\infty ) , \mathbb{R} ^{+} ) \) and \(\lambda \in ( 0,1 ) \), then

$$ \omega ^{\prime } ( \zeta ) \leq \frac{\rho ^{\prime } ( \zeta ) }{\rho ( \zeta ) }\omega ( \zeta ) -k \rho ( \zeta ) Q ( \zeta ) -\frac{ \lambda }{\eta ( \zeta ) }\omega ^{2} ( \zeta ), $$
(2.1)

where M is a positive real constant and

$$ Q ( \zeta ) := \int _{a}^{b}q ( \zeta ,s ) \bigl( 1-p \bigl( g ( \zeta ,s ) \bigr) \bigr) \,\mathrm{d}s $$

and

$$ \eta ( \zeta ) :=\frac{r ( \zeta ) \rho ( \zeta ) }{Mg^{n-2} ( \zeta ,s ) g^{\prime } ( \zeta ,a ) }. $$

Proof

Let \(x ( \zeta ) \) be an eventually positive solution of equation (1.1). Then we can assume that \(x ( \zeta ) >0\), \(x ( \sigma ( \zeta ) ) >0\), and \(x ( g ( \zeta ,s ) ) >0 \) for \(\zeta \geq \zeta _{1}\). Hence, we deduce \(z ( \zeta ) >0 \) for \(\zeta \geq \zeta _{1} \) and

$$ \bigl( rz^{ ( n-1 ) } \bigr) ^{\prime } ( \zeta ) =- \int _{a}^{b}q ( \zeta ,s ) f \bigl( x \bigl( g ( \zeta ,s ) \bigr) \bigr) \,\mathrm{d}s\leq 0. $$
(2.2)

Therefore, the function \(r ( \zeta ) z^{ ( n-1 ) } ( \zeta ) \) is decreasing and \(z^{ ( n-1 ) } ( \zeta ) \) is eventually of one sign. We claim that \(z^{ ( n-1 ) } ( \zeta ) \geq 0\). Otherwise, if there exists \(\zeta _{2}\geq \zeta _{1} \) such that \(z^{ ( n-1 ) } ( \zeta ) <0 \) for \(\zeta \geq \zeta _{2} \), and

$$ \bigl( rz^{ ( n-1 ) } \bigr) ( \zeta ) \leq \bigl( rz^{ ( n-1 ) } \bigr) ( \zeta _{2} ) =-m, $$

where m is a positive constant. Integrating the above inequality from \(\zeta _{2} \) to ζ, we have

$$ z^{ ( n-2 ) } ( \zeta ) \leq z^{ ( n-2 ) } ( \zeta _{2} ) -m \int _{\zeta _{2}}^{\zeta }\frac{1}{r ( s ) }\, \mathrm{d}s. $$

Letting \(\zeta \rightarrow \infty \), we get \(\lim_{\zeta \rightarrow \infty }z^{ ( n-2 ) } ( \zeta ) =-\infty \), which implies \(z ( \zeta ) \) is eventually negative by Lemma 1.1. This is a contradiction. Hence, we have that \(z^{ ( n-1 ) } ( \zeta ) \geq 0\) for \(\zeta \geq \zeta _{1}\). Furthermore, from Eq. (1.1) and \(( H_{1} )\), we get

$$ \bigl( rz^{ ( n ) } \bigr) ( \zeta ) =- \bigl( r^{\prime }z^{ ( n-1 ) } \bigr) ( \zeta ) - \int _{a}^{b}q ( \zeta ,s ) f \bigl( x \bigl( g ( \zeta ,s ) \bigr) \bigr) \,\mathrm{d}s\leq 0, $$

this implies that \(z^{ ( n ) } ( \zeta ) \leq 0\), \(\zeta \geq \zeta _{1}\). From Lemma 1.1, we obtain that

$$ z ( \zeta ) >0,\quad\quad z^{\prime } ( \zeta ) >0, \quad\quad z^{ ( n-1 ) } ( \zeta ) \geq 0, \quad \text{and}\quad z^{ ( n ) } ( \zeta ) \leq 0 $$
(2.3)

for \(\zeta \geq \zeta _{2}\) are satisfied.

Next, from definition (1.2), we get

$$\begin{aligned} x^{\alpha } ( \zeta ) =&z ( \zeta ) -p ( \zeta ) x \bigl( \sigma ( \zeta ) \bigr) \geq z ( \zeta ) -p ( \zeta ) z \bigl( \sigma ( \zeta ) \bigr) \geq z ( \zeta ) -p ( \zeta ) z ( \zeta ) \\ \geq & \bigl( 1-p ( \zeta ) \bigr) z ( \zeta ) , \end{aligned}$$

and so

$$ x^{\alpha } \bigl( g ( \zeta ,s ) \bigr) \geq z \bigl( g ( \zeta ,s ) \bigr) \bigl( 1-p \bigl( g ( \zeta ,s ) \bigr) \bigr) . $$
(2.4)

By \(( H_{3} ) \) and (2.4), we find

$$ f \bigl( x \bigl( g ( \zeta ,s ) \bigr) \bigr) \geq kz \bigl( g ( \zeta ,s ) \bigr) \bigl( 1-p \bigl( g ( \zeta ,s ) \bigr) \bigr) . $$
(2.5)

Combining (1.1) and (2.5), we have

$$ \bigl( rz^{ ( n-1 ) } \bigr) ^{\prime } ( \zeta ) \leq -k \int _{a}^{b}q ( \zeta ,s ) z \bigl( g ( \zeta ,s ) \bigr) \bigl( 1-p \bigl( g ( \zeta ,s ) \bigr) \bigr) \,\mathrm{d}s. $$

Since \(g ( \zeta ,s ) \) is nondecreasing with respect to s, we get \(g ( \zeta ,s ) \geq g ( \zeta ,a ) \) for \(s\in ( a,b ) \), and so

$$ \bigl( rz^{ ( n-1 ) } \bigr) ^{\prime } ( \zeta ) \leq -kz \bigl( g ( \zeta ,a ) \bigr) Q ( \zeta ) . $$
(2.6)

Using Lemma 1.2 with \(u=z^{\prime }\), there exists \(M>0\) such that

$$ z^{\prime } \bigl( \lambda g ( \zeta ,s ) \bigr) \geq Mg ^{n-2} ( \zeta ,s ) z^{ ( n-1 ) } \bigl( g ( \zeta ,s ) \bigr) \geq Mg^{n-2} ( \zeta ,s ) z^{ ( n-1 ) } ( \zeta ) . $$
(2.7)

From the definition of ω, we see that \(\omega ( \zeta ) >0 \) and

$$ \omega ^{\prime } ( \zeta ) =\frac{\rho ^{\prime } ( \zeta ) }{\rho ( \zeta ) }\omega ( \zeta ) +\rho ( \zeta ) \frac{ ( r ( \zeta ) z^{ ( n-1 ) } ( \zeta ) ) ^{\prime }}{z ( \lambda g ( \zeta ,a ) ) }- \lambda \rho ( \zeta ) \frac{r ( \zeta ) z ^{ ( n-1 ) } ( \zeta ) z^{\prime } ( \lambda g ( \zeta ,a ) ) g^{\prime } ( \zeta ,a ) }{ ( z ( \lambda g ( \zeta ,a ) ) ) ^{2}}. $$

From (2.6), we obtain

$$ \omega ^{\prime } ( \zeta ) \leq \frac{\rho ^{\prime } ( \zeta ) }{\rho ( \zeta ) }\omega ( \zeta ) -k \rho ( \zeta ) Q ( \zeta ) - \lambda \frac{z^{\prime } ( \lambda g ( \zeta ,a ) ) g ^{\prime } ( \zeta ,a ) }{z ( \lambda g ( \zeta ,a ) ) }\omega ( \zeta ) . $$

By using (2.7), we have

$$\begin{aligned} \omega ^{\prime } ( \zeta ) \leq &\frac{\rho ^{\prime } ( \zeta ) }{\rho ( \zeta ) }\omega ( \zeta ) -k\rho ( \zeta ) Q ( \zeta ) - \lambda \frac{Mg^{n-2} ( \zeta ,s ) z^{ ( n-1 ) } ( \zeta ) g^{\prime } ( \zeta ,a ) }{z ( \lambda g ( \zeta ,a ) ) }\omega ( \zeta ) \\ \leq &\frac{\rho ^{\prime } ( \zeta ) }{\rho ( \zeta ) }\omega ( \zeta ) -k\rho ( \zeta ) Q ( \zeta ) - \frac{\lambda }{\eta ( \upsilon ) }\omega ^{2} ( \zeta ) . \end{aligned}$$

This completes the proof. □

Theorem 2.1

If there exist a function \(\rho \in C^{1} ( [ \zeta _{0}, \infty ) ,\mathbb{R} ^{+} ) \) and constants \(\lambda \in ( 0,1 ) \), \(M>0\) such that

$$ \int _{\zeta _{0}}^{\infty } \biggl( k\rho ( \upsilon ) Q ( \upsilon ) -\frac{1}{4\lambda } \biggl( \frac{\rho ^{ \prime } ( \upsilon ) }{\rho ( \upsilon ) } \biggr) ^{2}\eta ( \upsilon ) \biggr) \,\mathrm{d} \upsilon =\infty , $$
(2.8)

then Eq. (1.1) is oscillatory.

Proof

Suppose that Eq. (1.1) has a nonoscillatory solution in \([ \zeta _{0},\infty ) \). Without loss of generality, we assume that \(x ( \zeta ) \) is an eventually positive solution of equation (1.1). From Lemma 2.1, we get that (2.1) holds. Using the inequality

$$ Uy-\upsilon y^{\frac{\gamma +1}{\gamma }}\leq \frac{\gamma ^{\gamma }}{ ( \gamma +1 ) ^{\gamma +1}}\frac{U^{\gamma +1}}{ \upsilon ^{\gamma }}, $$

with \(U=\rho ^{\prime }/\rho \), \(\upsilon =\lambda Mg^{n-2} ( \zeta ,s ) g^{\prime } ( \zeta ,a ) / ( r ( \zeta ) \rho ( \zeta ) ) \) and \(y=\omega ( \zeta ) \), we find

$$ \omega ^{\prime } ( \zeta ) \leq -k\rho ( \zeta ) Q ( \zeta ) + \frac{1}{4\lambda } \biggl( \frac{ \rho ^{\prime } ( \zeta ) }{\rho ( \zeta ) } \biggr) ^{2} \frac{r ( \zeta ) \rho ( \zeta ) }{Mg^{n-2} ( \zeta ,s ) g^{\prime } ( \zeta ,a ) }. $$

Integrating this inequality from \(\zeta _{1}\) to ζ, we obtain

$$\begin{aligned} \int _{\zeta _{1}}^{\zeta } \biggl( k\rho ( \upsilon ) Q ( \upsilon ) -\frac{1}{4\lambda } \biggl( \frac{\rho ^{ \prime } ( \upsilon ) }{\rho ( \upsilon ) } \biggr) ^{2}\eta ( \upsilon ) \biggr) \,\mathrm{d} \upsilon \leq &\omega ( \zeta _{1} ) -\omega ( \zeta ) \\ \leq &\omega ( \zeta _{1} ) , \end{aligned}$$

which contradicts (2.8) and this completes the proof. □

Theorem 2.2

If, for some constant \(\mu \in ( 0,1 ) \), the differential equation

$$ u^{\prime } ( \zeta ) +\widehat{Q} ( \zeta ) u \bigl( g ( \zeta ,a ) \bigr) =0 $$
(2.9)

is oscillatory, where

$$ \widehat{Q} ( \zeta ) :=\frac{k\mu g^{n-1} ( \zeta ,a ) }{ ( n-1 ) !r ( g ( \zeta ,a ) ) }Q ( \zeta ) , $$

then Eq. (1.1) is oscillatory.

Proof

Suppose that Eq. (1.1) has a nonoscillatory solution in \([ \zeta _{0},\infty ) \). Without loss of generality, we assume that \(x ( \zeta ) \) is an eventually positive solution of equation (1.1). From Lemma 2.1, we get that (2.3)–(2.6) hold. By using Lemma 1.3, we find

$$ z ( \zeta ) \geq \frac{\mu }{ ( n-1 ) !}\zeta ^{n-1}z ^{ ( n-1 ) } ( \zeta ) $$

for all \(\zeta \geq \zeta _{2}\geq \max \{ \zeta _{1},\zeta _{ \mu } \} \). Thus, from (2.6), we obtain

$$ \bigl( r ( \zeta ) z^{ ( n-1 ) } ( \zeta ) \bigr) ^{\prime }+ \frac{k\mu g^{n-1} ( \zeta ,a ) Q ( \zeta ) }{ ( n-1 ) !r ( g ( \zeta ,a ) ) } \bigl( r \bigl( g ( \zeta ,a ) \bigr) z^{ ( n-1 ) } \bigl( g ( \zeta ,a ) \bigr) \bigr) \leq 0. $$

Therefore, we see that \(u ( \zeta ) :=r ( \zeta ) z^{ ( n-1 ) } ( \zeta ) \) is a positive solution of the differential inequality

$$ u^{\prime } ( \zeta ) +\widehat{Q} ( \zeta ) u \bigl( g ( \zeta ,a ) \bigr) \leq 0. $$

From [29, Corollary 1], we have that Eq. (2.9) also has a positive solution, a contradiction. This completes the proof. □

By using Theorem 2.1.1 in [20], we get the following corollary.

Corollary 2.1

If, for some constant \(\mu \in ( 0,1 ) \),

$$ \underset{\zeta \rightarrow \infty }{\lim \inf } \int _{g ( \zeta ,a ) }^{\zeta }\frac{g^{n-1} ( s,a ) }{r ( g ( s,a ) ) }Q ( s ) \, \mathrm{d}s>\frac{ ( n-1 ) !}{k\mu \mathrm{e}}, $$

then Eq. (1.1) is oscillatory.

Theorem 2.3

If there exist \(H\in \Im \), \(\rho \in C^{1} ( [ \zeta _{0}, \infty ) ,\mathbb{R} ^{+} ) \) and constants \(\lambda \in ( 0,1 ) \), \(M>0\) such that

$$ \underset{\zeta \rightarrow \infty }{\lim \sup }\frac{1}{H ( \zeta ,\zeta _{0} ) } \int _{\zeta _{0}}^{\zeta }H ( \zeta , \upsilon ) \biggl( k \rho ( \upsilon ) Q ( \upsilon ) -\frac{1}{4\lambda }\eta ( \upsilon ) \varPhi ^{2} ( \zeta ,\upsilon ) \biggr) \,\mathrm{d}\upsilon =\infty , $$
(2.10)

where

$$ \varPhi ( \zeta ,s ) =\frac{\rho ^{\prime } ( s ) }{ \rho ( s ) }-\frac{h ( \zeta ,s ) }{\sqrt{H ( \zeta ,s ) }}, $$

then Eq. (1.1) is oscillatory.

Proof

Suppose that Eq. (1.1) has a nonoscillatory solution in \([ \zeta _{0},\infty ) \). Without loss of generality, we assume that \(x ( \zeta ) \) is an eventually positive solution of equation (1.1). From Lemma 2.1, we get that (2.1) holds. Multiplying (2.1) by \(H ( \zeta ,s ) \) and integrating from \(\zeta _{2}\) to ζ, we get

$$\begin{aligned}& \omega ^{\prime } ( s ) \leq \frac{\rho ^{\prime } ( s ) }{\rho ( s ) }\omega ( s ) -k\rho ( s ) Q ( s ) -\frac{\lambda }{\eta ( s ) }\omega ^{2} ( s ) , \\& \begin{aligned} k \int_{\zeta _{2}}^{\zeta }H ( \zeta ,\upsilon ) \rho ( \upsilon ) Q ( \upsilon ) \,\mathrm{d}\upsilon &\leq {-} \int_{\zeta _{2}}^{\zeta }H ( \zeta ,\upsilon ) \omega ^{\prime } ( \upsilon ) \,\mathrm{d}\upsilon - \int_{\zeta _{2}}^{\zeta }H ( \zeta ,\upsilon ) \frac{\lambda }{\eta ( \upsilon ) }\omega ^{2} ( \upsilon ) \,\mathrm{d}\upsilon \\ &\quad {}+ \int_{\zeta _{2}}^{\zeta }H ( \zeta ,\upsilon ) \frac{\rho ^{\prime } ( \upsilon ) }{\rho ( \upsilon ) }\omega ( \upsilon ) \,\mathrm{d}\upsilon \\ &\leq H ( \zeta ,\zeta _{2} ) \omega ( \zeta _{2} ) - \int_{\zeta _{2}}^{\zeta }H ( \zeta ,\upsilon ) \frac{\lambda }{\eta ( \upsilon ) }\omega ^{2} ( \upsilon ) \,\mathrm{d}\upsilon \\ &\quad {}+ \int_{\zeta _{2}}^{\zeta }H ( \zeta ,\upsilon ) \omega ( \upsilon ) \Phi ( \zeta ,\upsilon ) \,\mathrm{d}\upsilon \end{aligned} \end{aligned}$$

and hence,

$$\begin{aligned} k \int _{\zeta _{2}}^{\zeta }H ( \zeta ,\upsilon ) \rho ( \upsilon ) Q ( \upsilon ) \,\mathrm{d}\upsilon \leq &H ( \zeta ,\zeta _{2} ) \omega ( \zeta _{2} ) \\ & {} - \int _{\zeta _{2}}^{\zeta }H ( \zeta ,\upsilon ) \frac{ \lambda }{\eta ( \upsilon ) } \biggl( \omega ^{2} ( \upsilon ) - \frac{\eta ( \upsilon ) }{\lambda } \varPhi ( \zeta ,\upsilon ) \omega ( \upsilon ) \biggr) \, \mathrm{d}\upsilon . \end{aligned}$$

It follows that

$$\begin{aligned}& \frac{1}{H ( \zeta ,\zeta _{2} ) } \int _{\zeta _{2}} ^{\zeta }H ( \zeta ,\upsilon ) \biggl( k \rho ( \upsilon ) Q ( \upsilon ) -\frac{1}{4\lambda } \eta ( \upsilon ) \varPhi ^{2} ( \zeta ,\upsilon ) \biggr) \,\mathrm{d}\upsilon \\& \quad \leq \omega ( \zeta _{2} ) -\frac{1}{H ( \zeta ,\zeta _{2} ) } \int _{\zeta _{2}}^{\zeta }H ( \zeta ,\upsilon ) \frac{\lambda }{\eta ( \upsilon ) } \biggl( \omega ( \upsilon ) -\frac{1}{2 \lambda }\eta ( \upsilon ) \varPhi ( \zeta ,\upsilon ) \biggr) ^{2}\,\mathrm{d} \upsilon , \end{aligned}$$

which implies

$$ \underset{\zeta \rightarrow \infty }{\lim \sup }\frac{1}{H ( \zeta ,\zeta _{2} ) } \int _{\zeta _{2}}^{\zeta }H ( \zeta , \upsilon ) \biggl( k \rho ( \upsilon ) Q ( \upsilon ) -\frac{1}{4\lambda }\eta ( \upsilon ) \varPhi ^{2} ( \zeta ,\upsilon ) \biggr) \,\mathrm{d}\upsilon \leq \omega ( \zeta _{2} ) . $$

From (2.10), we have a contradiction. This completes the proof. □

The following oscillation criteria treat the cases when it is not possible to verify easily conditions (2.10).

Theorem 2.4

Assume that

$$ 0< \underset{s\geq \zeta }{\inf } \biggl( \underset{\zeta \rightarrow \infty }{ \lim \inf }\frac{H ( \zeta ,s ) }{H ( \zeta ,\zeta _{0} ) } \biggr) \leq \infty $$

and

$$ \underset{\zeta \rightarrow \infty }{\lim \sup }\frac{1}{H ( \zeta ,\zeta _{0} ) } \int _{\zeta _{0}}^{\zeta }H ( \zeta , \upsilon ) \eta ( \upsilon ) \varPhi ^{2} ( \zeta ,\upsilon ) \,\mathrm{d}\upsilon < \infty . $$

If there exists \(\psi \in C ( [ \zeta _{0},\infty ) , \mathbb{R} ) \) such that, for \(\zeta \geq \zeta _{0}\),

$$ \underset{\zeta \rightarrow \infty }{\lim \sup } \int _{\zeta _{0}}^{ \zeta }\frac{\psi _{+}^{2} ( s ) }{\eta ( s ) }\, \mathrm{d}s= \infty $$

and

$$ \underset{\zeta \rightarrow \infty }{\lim \sup }\frac{1}{H ( \zeta ,\zeta _{0} ) } \int _{\zeta _{0}}^{\zeta }H ( \zeta , \upsilon ) \biggl( k \rho ( \upsilon ) Q ( \upsilon ) -\frac{1}{4\lambda }\eta ( \upsilon ) \varPhi ^{2} ( \zeta ,\upsilon ) \biggr) \,\mathrm{d}\upsilon \geq \underset{\zeta \geq \zeta _{0}}{\sup }\psi ( \zeta ), $$

where \(\psi _{+} ( \zeta ) =\max \{ \psi ( \zeta ) ,0 \} \), then every solution of Eq. (1.1) is oscillatory.

The proof of Theorem 2.4 is similar to the proof of Theorem 2.5 in [18] and hence is omitted.

Example 2.1

Consider the following nth-order neutral differential equation:

$$ \biggl( \biggl( x^{3} ( \zeta ) + \biggl( 1-\frac{1}{ \zeta } \biggr) x ( \zeta -\sigma ) \biggr) ^{\prime } \biggr) ^{\prime }+ \int _{1/2}^{1}\zeta ^{2}sx^{3} ( \zeta s ) \,\mathrm{d}s=0, $$
(2.11)

where \(n=2\), \(\alpha =3\), \(r ( \zeta ) =1\), \(p ( \zeta ) =1-\frac{1}{\zeta }\), \(\sigma ( \zeta ) =\zeta - \sigma \), \(q ( \zeta ,s ) =\zeta ^{2}s\), \(f ( x ) =x ^{3}\), \(g ( \zeta ,s ) =\zeta s\), and let \(\rho ( \zeta ) =1\), then for any constants \(\lambda \in ( 0,1 ) \) and \(M>0\) we have

$$ \int _{\zeta _{0}}^{\infty } \biggl( k\rho ( \upsilon ) Q ( \upsilon ) -\frac{1}{4\lambda } \biggl( \frac{\rho ^{ \prime } ( \upsilon ) }{\rho ( \upsilon ) } \biggr) ^{2}\eta ( \upsilon ) \biggr) \,\mathrm{d} \upsilon =\infty . $$

From Theorem 2.1, it follows that Eq. (2.11) is oscillatory.

Example 2.2

Consider the equation

$$ \bigl( \zeta \bigl( x^{\alpha } ( \zeta ) +p_{0}x ( \delta \sigma ) \bigr) ^{n-1} \bigr) ^{\prime }+\frac{q_{0}}{ \zeta ^{n-1}}x^{\alpha } ( \beta \zeta ) =0, $$
(2.12)

where \(p_{0}\in [ 0,1 ) \), \(\delta ,\beta \in ( 0,1 ) \), and \(q_{0}>0\). We note that \(a=0\), \(b=1\), \(r ( \zeta ) :=\zeta \), \(q ( \zeta ) :=q_{0}/\zeta ^{n-1}\), and \(f ( x ) :=x^{\alpha }\). Hence,

$$ Q ( \zeta ) :=q_{0} ( 1-p_{0} ) \zeta ^{1-n}. $$

Let \(\rho ( \zeta ) :=\zeta ^{n}\). Then we have (2.8) holds if

$$ q_{0} ( 1-p_{0} ) \beta ^{n-1}> \frac{n^{2}}{4\lambda M} $$
(2.13)

for every positive constant M. By using Theorem 2.1, Eq. (2.11) is oscillatory if (2.13) holds. Note that there is difficulty in applying Condition (2.13) due to a constant M. But, by using Corollary 2.1, we get that Eq. (2.11) is oscillatory if

$$ \underset{\zeta \rightarrow \infty }{\lim \inf } \int _{g ( \zeta ,a ) }^{\zeta }\beta ^{n-2}q_{0} ( 1-p _{0} ) \frac{1}{s}\,\mathrm{d}s> \frac{ ( n-1 ) !}{k \mu \mathrm{e}}, $$

that is,

$$ q_{0} ( 1-p_{0} ) \beta ^{n-2}\ln \frac{1}{\beta }>\frac{ ( n-1 ) !}{\mu \mathrm{e}}. $$
(2.14)