Skip to main content
Log in

Dynamics of myosin degradation in intensive care unit-acquired weakness during severe critical illness

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Importance

Intensive care unit (ICU)-acquired muscle wasting is a devastating complication leading to persistent weakness and functional disability. The mechanisms of this myopathy are unclear, but a disturbed balance of myosin heavy chain (MyHC) is implicated.

Objective

To investigate pathways of myosin turnover in severe critically ill patients at high risk of ICU-acquired weakness.

Design

Prospective, mechanistic, observational study.

Setting

Interdisciplinary ICUs of a university hospital.

Participants

Twenty-nine patients with Sequential Organ Failure Assessment (SOFA) scores of at least 8 on three consecutive days within the first 5 days in ICU underwent two consecutive open skeletal muscle biopsies from the vastus lateralis at median days 5 and 15. Control biopsy specimens were from healthy subjects undergoing hip-replacement surgery.

Interventions

None.

Main outcome(s) and measure(s)

Time-dependent changes in myofiber architecture, MyHC synthesis, and degradation were determined and correlated with clinical data.

Results

ICU-acquired muscle wasting was characterized by early, disrupted myofiber ultrastructure followed by atrophy of slow- and fast-twitch myofibers at later time points. A rapid decrease in MyHC mRNA and protein expression occurred by day 5 and persisted at day 15 (P < 0.05). Expression of the atrophy genes MuRF-1 and Atrogin1 was increased at day 5 (P < 0.05). Early MuRF-1 protein content was closely associated with late myofiber atrophy and the severity of weakness.

Conclusions and relevance

Decreased synthesis and increased degradation of MyHCs contribute to ICU-acquired muscle wasting. The rates and time frames suggest that pathogenesis of muscle failure is initiated very early during critical illness. The persisting reduction of MyHC suggests that sustained treatment is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. De Jonghe B, Sharshar T, Lefaucheur JP, Authier FJ, Durand-Zaleski I, Boussarsar M, Cerf C, Renaud E, Mesrati F, Carlet J, Raphael JC, Outin H, Bastuji-Garin S (2002) Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA 288:2859–2867

    Article  PubMed  Google Scholar 

  2. Jaber S, Jung B, Matecki S, Petrof BJ (2011) Clinical review: ventilator-induced diaphragmatic dysfunction—human studies confirm animal model findings! Crit Care 15:206

    Article  PubMed Central  PubMed  Google Scholar 

  3. Tobin MJ, Laghi F, Jubran A (2010) Narrative review: ventilator-induced respiratory muscle weakness. Ann Intern Med 153:240–245

    Article  PubMed Central  PubMed  Google Scholar 

  4. Herridge MS, Cheung AM, Tansey CM, Matte-Martyn A, Diaz-Granados N, Al-Saidi F, Cooper AB, Guest CB, Mazer CD, Mehta S, Stewart TE, Barr A, Cook D, Slutsky AS (2003) One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med 348:683–693

    Article  PubMed  Google Scholar 

  5. Cheung AM, Tansey CM, Tomlinson G, Diaz-Granados N, Matte A, Barr A, Mehta S, Mazer CD, Guest CB, Stewart TE, Al-Saidi F, Cooper AB, Cook D, Slutsky AS, Herridge MS (2006) Two-year outcomes, health care use, and costs of survivors of acute respiratory distress syndrome. Am J Respir Crit Care Med 174:538–544

    Article  PubMed  Google Scholar 

  6. Bierbrauer J, Koch S, Olbricht C, Hamati J, Lodka D, Schneider J, Luther-Schroder A, Kleber C, Faust K, Wiesener S, Spies CD, Spranger J, Spuler S, Fielitz J, Weber-Carstens S (2012) Early type II fiber atrophy in intensive care unit patients with nonexcitable muscle membrane. Crit Care Med 40:647–650

    Article  PubMed  Google Scholar 

  7. Helliwell TR, Wilkinson A, Griffiths RD, McClelland P, Palmer TE, Bone JM (1998) Muscle fibre atrophy in critically ill patients is associated with the loss of myosin filaments and the presence of lysosomal enzymes and ubiquitin. Neuropathol Appl Neurobiol 24:507–517

    Article  PubMed  CAS  Google Scholar 

  8. Gruther W, Benesch T, Zorn C, Paternostro-Sluga T, Quittan M, Fialka-Moser V, Spiss C, Kainberger F, Crevenna R (2008) Muscle wasting in intensive care patients: ultrasound observation of the M. quadriceps femoris muscle layer. J Rehabil Med 40:185–189

    Article  PubMed  Google Scholar 

  9. Poulsen JB, Rose MH, Jensen BR, Moller K, Perner A (2013) Biomechanical and nonfunctional assessment of physical capacity in male ICU survivors. Crit Care Med 41:93–101

    Article  PubMed  Google Scholar 

  10. Callahan LA, Supinski GS (2009) Hyperglycemia and acquired weakness in critically ill patients: potential mechanisms. Crit Care 13:125

    Article  PubMed Central  PubMed  Google Scholar 

  11. Winkelman C (2010) The role of inflammation in ICU-acquired weakness. Crit Care 14:186

    Article  PubMed Central  PubMed  Google Scholar 

  12. Weber-Carstens S, Deja M, Koch S, Spranger J, Bubser F, Wernecke KD, Spies CD, Spuler S, Keh D (2010) Risk factors in critical illness myopathy during the early course of critical illness: a prospective observational study. Crit Care 14:R119

    Article  PubMed Central  PubMed  Google Scholar 

  13. Klaude M, Mori M, Tjader I, Gustafsson T, Wernerman J, Rooyackers O (2012) Protein metabolism and gene expression in skeletal muscle of critically ill patients with sepsis. Clin Sci (Lond) 122:133–142

    Article  CAS  Google Scholar 

  14. Lecker SH (2003) Ubiquitin-protein ligases in muscle wasting: multiple parallel pathways? Curr Opin Clin Nutr Metab Care 6:271–275

    PubMed  CAS  Google Scholar 

  15. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–899

    Article  PubMed  CAS  Google Scholar 

  16. Lecker SH, Solomon V, Mitch WE, Goldberg AL (1999) Muscle protein breakdown and the critical role of the ubiquitin–proteasome pathway in normal and disease states. J Nutr 129:227S–237S

    PubMed  CAS  Google Scholar 

  17. Levine S, Biswas C, Dierov J, Barsotti R, Shrager JB, Nguyen T, Sonnad S, Kucharchzuk JC, Kaiser LR, Singhal S, Budak MT (2011) Increased proteolysis, myosin depletion, and atrophic AKT–FOXO signaling in human diaphragm disuse. Am J Respir Crit Care Med 183:483–490

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, Rubinstein NA, Powers SK, Shrager JB (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358:1327–1335

    Article  PubMed  CAS  Google Scholar 

  19. Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, Hopkinson NS, Padhke R, Dew T, Sidhu PS, Velloso C, Seymour J, Agley CC, Selby A, Limb M, Edwards LM, Smith K, Rowlerson A, Rennie MJ, Moxham J, Harridge SD, Hart N, Montgomery HE (2013) Acute skeletal muscle wasting in critical illness. JAMA 310:1591–1600

    Article  PubMed  CAS  Google Scholar 

  20. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708

    Article  PubMed  CAS  Google Scholar 

  21. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39–51

    Article  PubMed  CAS  Google Scholar 

  22. Sacheck JM, Hyatt JP, Raffaello A, Jagoe RT, Roy RR, Edgerton VR, Lecker SH, Goldberg AL (2007) Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J 21:140–155

    Article  PubMed  CAS  Google Scholar 

  23. Fielitz J, Kim MS, Shelton JM, Latif S, Spencer JA, Glass DJ, Richardson JA, Bassel-Duby R, Olson EN (2007) Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3. J Clin Invest 117:2486–2495

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Derde S, Hermans G, Derese I, Guiza F, Hedstrom Y, Wouters PJ, Bruyninckx F, D’Hoore A, Larsson L, Van den Berghe G, Vanhorebeek I (2012) Muscle atrophy and preferential loss of myosin in prolonged critically ill patients. Crit Care Med 40:79–89

    Article  PubMed  Google Scholar 

  25. Wollersheim T, Woehlecke J, Krebs M, Hamati J, Lodka D, Langhans C, Luther-Schroeder A, Haas K, Rathke T, Kleber C, Spies C, Labeit S, Schuelke M, Spuler S, Spranger J, Weber-Carstens S, Fielitz J (2013) Rapid myosin loss in intensive care unit acquired weakness. Intensive Care Med 39:228

    Google Scholar 

  26. Wollersheim T, Weber-Carstens S, Egbers C, Luther A, Krebs M, Hamati J, Lodka D, Kleber C, Spies C, Spuler S, Fielitz J (2012) Dynamics of skeletal muscle atrophy and atrophy gene expression in critically ill patients during ICU stay. Intensive Care Med 38:130

    Google Scholar 

  27. Weber-Carstens S, Koch S, Spuler S, Spies CD, Bubser F, Wernecke KD, Deja M (2009) Nonexcitable muscle membrane predicts intensive care unit-acquired paresis in mechanically ventilated, sedated patients. Crit Care Med 37:2632–2637

    Article  PubMed  Google Scholar 

  28. Kim MS, Fielitz J, McAnally J, Shelton JM, Lemon DD, McKinsey TA, Richardson JA, Bassel-Duby R, Olson EN (2008) Protein kinase D1 stimulates MEF2 activity in skeletal muscle and enhances muscle performance. Mol Cell Biol 28:3600–3609

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Eikermann M, Latronico N (2013) What is new in prevention of muscle weakness in critically ill patients? Intensive Care Med 39:2200–2203

    Article  PubMed  Google Scholar 

  30. Du J, Wang X, Miereles C, Bailey JL, Debigare R, Zheng B, Price SR, Mitch WE (2004) Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113:115–123

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Tidball JG, Spencer MJ (2002) Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse. J Physiol 545:819–828

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Smith IJ, Alamdari N, O’Neal P, Gonnella P, Aversa Z, Hasselgren PO (2010) Sepsis increases the expression and activity of the transcription factor Forkhead Box O 1 (FOXO1) in skeletal muscle by a glucocorticoid-dependent mechanism. Int J Biochem Cell Biol 42:701–711

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Ciechanover A (2006) The ubiquitin proteolytic system: from a vague idea, through basic mechanisms, and onto human diseases and drug targeting. Neurology 66:S7–S19

    Article  PubMed  Google Scholar 

  35. Weber-Carstens S, Schneider J, Wollersheim T, Assmann A, Bierbrauer J, Marg A, Al Hasani H, Chadt A, Wenzel K, Koch S, Fielitz J, Kleber C, Faust K, Mai K, Spies CD, Luft FC, Boschmann M, Spranger J, Spuler S (2012) Critical illness myopathy and GLUT4—significance of insulin and muscle contraction. Am J Respir Crit Care Med 187:387–396

    Article  PubMed  Google Scholar 

  36. Moriscot AS, Baptista IL, Bogomolovas J, Witt C, Hirner S, Granzier H, Labeit S (2010) MuRF1 is a muscle fiber-type II associated factor and together with MuRF2 regulates type-II fiber trophicity and maintenance. J Struct Biol 170:344–353

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Crossland H, Constantin-Teodosiu D, Gardiner SM, Constantin D, Greenhaff PL (2008) A potential role for Akt/FOXO signalling in both protein loss and the impairment of muscle carbohydrate oxidation during sepsis in rodent skeletal muscle. J Physiol 586:5589–5600

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Dardevet D, Sornet C, Taillandier D, Savary I, Attaix D, Grizard J (1995) Sensitivity and protein turnover response to glucocorticoids are different in skeletal muscle from adult and old rats. Lack of regulation of the ubiquitin-proteasome proteolytic pathway in aging. J Clin Invest 96:2113–2119

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Minneci PC, Deans KJ, Banks SM, Eichacker PQ, Natanson C (2004) Meta-analysis: the effect of steroids on survival and shock during sepsis depends on the dose. Ann Intern Med 141:47–56

    Article  PubMed  CAS  Google Scholar 

  40. Griffiths RD, Hall JB (2010) Intensive care unit-acquired weakness. Crit Care Med 38:779–787

    Article  PubMed  Google Scholar 

  41. Ali NA, O’Brien JM Jr, Hoffmann SP, Phillips G, Garland A, Finley JC, Almoosa K, Hejal R, Wolf KM, Lemeshow S, Connors AF Jr, Marsh CB (2008) Acquired weakness, handgrip strength, and mortality in critically ill patients. Am J Respir Crit Care Med 178:261–268

    Article  PubMed  Google Scholar 

  42. Kress JP, Herridge MS (2012) Medical and economic implications of physical disability of survivorship. Semin Respir Crit Care Med 33:339–347

    Article  PubMed  Google Scholar 

  43. Unroe M, Kahn JM, Carson SS, Govert JA, Martinu T, Sathy SJ, Clay AS, Chia J, Gray A, Tulsky JA, Cox CE (2010) One-year trajectories of care and resource utilization for recipients of prolonged mechanical ventilation: a cohort study. Ann Intern Med 153:167–175

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful for the patience and courage of our patients and their consenting relatives. We thank Anika Lindner and Josefine Russ for technical assistance. We thank Friedrich C. Luft, MD, FACP for his continued support and editorial assistance. The Deutsche Forschungsgemeinschaft (FI 965/2-1, FI 965/4-1 and La668/14-1, KFO 192—WE 4386/1-2), Muscular Dystrophy Association, Marie Curie International Reintegration grant (FP7-PEOPLE-2007-4-3-IRG), and the Deutsche Gesellschaft für Muskelkranke supported this work.

Conflicts of interest

The authors are not aware of any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Fielitz.

Additional information

T. Wollersheim and J. Woehlecke contributed equally to this work.

S. Weber-Carstens and J. Fielitz contributed equally to this work.

Take-home message: Intensive care unit (ICU)-acquired muscle wasting is a devastating complication leading to persistent weakness and functional disability. We demonstrate that decreased synthesis and increased degradation of myosin heavy chains contribute to ICU-acquired muscle wasting, and conclude that therapeutic interventions must be initiated very early during critical illness.

Trial registration

The study was registered at http://www.controlled-trials.com as ISRCTN77569430.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 568 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wollersheim, T., Woehlecke, J., Krebs, M. et al. Dynamics of myosin degradation in intensive care unit-acquired weakness during severe critical illness. Intensive Care Med 40, 528–538 (2014). https://doi.org/10.1007/s00134-014-3224-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-014-3224-9

Keywords

Navigation