Skip to main content
Log in

Symmetry breaking in photosystem I: ultrafast optical studies of variants near the accessory chlorophylls in the A- and B-branches of electron transfer cofactors

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Femtosecond absorption spectroscopy of Photosystem I (PS I) complexes from the cyanobacterium Synechocystis sp. PCC 6803 was carried out on three pairs of complementary amino acid substitutions located near the second pair of chlorophyll molecules Chl2A and Chl2B (also termed A-1A and A-1B). The absorption dynamics at delays of 0.1–500 ps were analyzed by decomposition into discrete decay-associated spectra and continuously distributed exponential components. The multi-exponential deconvolution of the absorption changes revealed that the electron transfer reactions in the PsaA-N600M, PsaA-N600H, and PsaA-N600L variants near the B-branch of cofactors are similar to those of the wild type, while the PsaB-N582M, PsaB-N582H, and PsaB-N582L variants near the A-branch of cofactors cause significant alterations of the photochemical processes, making them heterogeneous and poorly described by a discrete exponential kinetic model. A redistribution of the unpaired electron between the second and the third monomers Chl2A/Chl2B and Chl3A/Chl3B was identified in the time range of 9–20 ps, and the subsequent reduction of A1 was identified in the time range of 24–70 ps. In the PsaA-N600L and PsaB-N582H/L variants, the reduction of A1 occurred with a decreased quantum yield of charge separation. The decreased quantum yield correlates with a slowing of the phylloquinone A0 → A1 reduction, but not with the initial transient spectra measured at the shortest time delay. The results support a branch competition model, where the electron is sheared between Chl2AChl3A and Chl2BChl3B cofactors before its transfer to phylloquinone in either A1A or A1B sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jordan, P., Fromme, P., Witt, H. T., Klukas, O., Saenger, W., & Krauß, N. (2001). Three-dimensional structure of cyanobaoterial photosystem I at 2.5 Å resolution. Nature, 411, 909–917.

    Article  CAS  PubMed  Google Scholar 

  2. Mazor, Y., Nataf, D., Toporik, H., & Nelson, N. (2014). Crystal structures of virus-like photosystem I complexes from the mesophilic cyanobacterium Synechocystis PCC 6803. eLife, 3, e01496.

    Article  PubMed Central  Google Scholar 

  3. Mazor, Y., Borovikova, A., & Nelson, N. (2017). The structure of plant photosystem I super-complex at 2.8 A resolution. Nature Plants, 3, 17014.

    Article  CAS  PubMed  Google Scholar 

  4. Gorka, M., Charles, P., Kalendra, V., Baldansuren, A., Lakshmi, K. V., & Golbeck, J. H. (2021). A dimeric chlorophyll electron acceptor differentiates type I from type II photosynthetic reaction centers. iScience, 24, 102719.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Melkozernov, A. N., Lin, S., & Blankenship, R. E. (2000). Excitation dynamics and heterogeneity of energy equilibration in the core antenna of photosystem I from the Cyanobacterium Synechocystis sp. PCC 6803. Biochemistry, 39, 1489–1498.

    Article  CAS  PubMed  Google Scholar 

  6. Savikhin, S., & Jankowiak, R. (2014). In J. Golbeck & A. van der Est (Eds.), The biophysics of photosynthesis (pp. 193–240). Springer.

  7. Di Donato, M., Stahl, A. D., Van Stokkum, I. H. M., Van Grondelle, R., & Groot, M. L. (2011). Cofactors involved in light-driven charge separation in photosystem I identified by subpicosecond infrared spectroscopy. Biochemistry, 50, 480–490.

    Article  PubMed  CAS  Google Scholar 

  8. Müller, M. G., Niklas, J., Lubitz, W., & Holzwarth, A. R. (2003). Ultrafast transient absorption studies on photosystem I reaction centers from Chlamydomonas reinhardtii. 1. A new interpretation of the energy trapping and early electron transfer steps in photosystem I. Biophysical Journal, 85, 3899–3922.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nürnberg, D. J., Morton, J., Santabarbara, S., Telfer, A., Joliot, P., Antonaru, L. A., Ruban, A. V., Cardona, T., Krausz, E., Boussac, A., Fantuzzi, A., & Rutherford, A. W. (2018). Photochemistry beyond the red limit in chlorophyll f–containing photosystems. Science, 360, 1210–1213.

    Article  PubMed  CAS  Google Scholar 

  10. Russo, M., Petropoulos, V., Molotokaite, E., Cerullo, G., Casazza, A. P., Maiuri, M., & Santabarbara, S. (2020). Ultrafast excited-state dynamics in land plants Photosystem I core and whole supercomplex under oxidised electron donor conditions. Photosynthesis Research, 144, 221–233.

    Article  CAS  PubMed  Google Scholar 

  11. Gibasiewicz, K., Ramesh, V. M., Melkozernov, A. N., Lin, S., Woodbury, N. W., Blankenship, R. E., & Webber, A. N. (2001). Excitation dynamics in the core antenna of PS I from Chlamydomonas reinhardtii CC 2696 at room temperature. The Journal of Physical Chemistry B, 105, 11498–11506.

    Article  CAS  Google Scholar 

  12. Shelaev, I. V., Gostev, F. E., Mamedov, M. D., Sarkisov, O. M., Nadtochenko, V. A., Shuvalov, V. A., & Semenov, A. Y. (2010). Femtosecond primary charge separation in Synechocystis sp. PCC 6803 photosystem I. Biochimica et Biophysica Acta Bioenergetics, 1797, 1410–1420.

    Article  CAS  Google Scholar 

  13. Cherepanov, D. A., Shelaev, I. V., Gostev, F. E., Mamedov, M. D., Petrova, A. A., Aybush, A. V., Shuvalov, V. A., Semenov, A. Y., & Nadtochenko, V. A. (2017). Mechanism of adiabatic primary electron transfer in photosystem I: Femtosecond spectroscopy upon excitation of reaction center in the far-red edge of the Q Y band. Biochimica et Biophysica Acta Bioenergetics, 1858, 895–905.

    Article  CAS  PubMed  Google Scholar 

  14. Giera, W., Ramesh, V. M., Webber, A. N., van Stokkum, I., van Grondelle, R., & Gibasiewicz, K. (2010). Effect of the P700 pre-oxidation and point mutations near A0 on the reversibility of the primary charge separation in Photosystem I from Chlamydomonas reinhardtii. Biochimica et Biophysica Acta Bioenergetics, 1797, 106–112.

    Article  CAS  Google Scholar 

  15. Molotokaite, E., Remelli, W., Casazza, A. P., Zucchelli, G., Polli, D., Cerullo, G., & Santabarbara, S. (2017). Trapping dynamics in Photosystem I-light harvesting complex I of higher plants is governed by the competition between excited state diffusion from low energy states and photochemical charge separation. The Journal of Physical Chemistry B, 121, 9816–9830.

    Article  CAS  PubMed  Google Scholar 

  16. Müller, M. G., Slavov, C., Luthra, R., Redding, K. E., & Holzwarth, A. R. (2010). Independent initiation of primary electron transfer in the two branches of the photosystem I reaction center. Proceedings of the National Academy of Sciences of the United States of America, 107, 4123–4128.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhu, J., Van Stokkum, I. H. M., Paparelli, L., Jones, M. R., & Groot, M. L. (2013). Early bacteriopheophytin reduction in charge separation in reaction centers of Rhodobacter sphaeroides. Biophysical Journal, 104, 2493–2502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guergova-Kuras, M., Boudreaux, B., Joliot, A., Joliot, P., & Redding, K. (2001). Evidence for two active branches for electron transfer in photosystem I. Proceedings of the National Academy of Sciences of the United States of America, 98, 4437–4442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, Y., Van Der Est, A., Lucas, M. G., Ramesh, V. M., Gu, F., Petrenko, A., Lin, S., Webber, A. N., Rappaport, F., & Redding, K. (2006). Directing electron transfer within Photosystem I by breaking H-bonds in the cofactor branches. Proceedings of the National Academy of Sciences of the United States of America, 103, 2144–2149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gibasiewicz, K., Ramesh, V. M., Lin, S., Redding, K., Woodbury, N. W., & Webber, A. N. (2003). Excitonic interactions in wild-type and mutant PSI reaction centers. Biophysics Journal, 85, 2547–2559.

    Article  CAS  Google Scholar 

  21. Ramesh, V. M., Gibasiewicz, K., Lin, S., Bingham, S. E., & Webber, A. N. (2004). Bidirectional electron transfer in photosystem I: accumulation of A0- in A-side or B-side mutants of the axial ligand to chlorophyll A0. Biochemistry, 43, 1369–1375.

    Article  CAS  PubMed  Google Scholar 

  22. Santabarbara, S., Kuprov, I., Fairclough, W. V., Purton, S., Hore, P. J., Heathcote, P., & Evans, M. C. W. (2005). Bidirectional electron transfer in photosystem I: Determination of two distances between P700+ and A1- in spin-correlated radical pairs. Biochemistry, 44, 2119–2128.

    Article  CAS  PubMed  Google Scholar 

  23. Giera, W., Gibasiewicz, K., Ramesh, V. M., Lin, S., & Webber, A. (2009). Electron transfer from A0̄ to A1 in Photosystem i from Chlamydomonas reinhardtii occurs in both the A and B branch with 25–30-ps lifetime. Physical Chemistry Chemical Physics: PCCP, 11, 5186–5191.

    Article  CAS  PubMed  Google Scholar 

  24. Ramesh, V. M., Gibasiewicz, K., Lin, S., Bingham, S. E., & Webber, A. N. (2007). Replacement of the methionine axial ligand to the primary electron acceptor A0 slows the A0- reoxidation dynamics in Photosystem I. Biochimica et Biophysica Acta Bioenergetics, 1767, 151–160.

    Article  CAS  Google Scholar 

  25. Dashdorj, N., Xu, W., Cohen, R. O., Golbeck, J. H., & Savikhin, S. (2005). Asymmetric electron transfer in cyanobacterial photosystem I: Charge separation and secondary electron transfer dynamics of mutations near the primary electron acceptor A0. Biophysical Journal, 88, 1238–1249.

    Article  CAS  PubMed  Google Scholar 

  26. Cohen, R. O., Shen, G., Golbeck, J. H., Xu, W., Chitnis, P. R., Valieva, A. I., Van Der Est, A., Pushkar, Y., & Stehlik, D. (2004). Evidence for asymmetric electron transfer in cyanobacterial photosystem I: Analysis of a methionine-to-leucine mutation of the ligand to the primary electron acceptor A0. Biochemistry, 43, 4741–4754.

    Article  CAS  PubMed  Google Scholar 

  27. Santabarbara, S., Kuprov, I., Poluektov, O., Casal, A., Russell, C. A., Purton, S., & Evans, M. C. W. (2010). Directionality of electron-transfer reactions in photosystem I of prokaryotes: Universality of the bidirectional electron-transfer model. The Journal of Physical Chemistry B, 114, 15158–15171.

    Article  CAS  PubMed  Google Scholar 

  28. Sun, J., Hao, S., Radle, M., Xu, W., Shelaev, I., Nadtochenko, V., Shuvalov, V., Semenov, A., Gordon, H., van der Est, A., & Golbeck, J. H. (2014). Evidence that histidine forms a coordination bond to the A0A and A0B chlorophylls and a second H-bond to the A1A and A1B phylloquinones in M688HPsaA and M668HPsaB variants of Synechocystis sp PCC 6803. Biochimica et Biophysica Acta Bioenergetics, 1837, 1362–1375.

    Article  CAS  Google Scholar 

  29. Badshah, S. L., Sun, J., Mula, S., Gorka, M., Baker, P., Luthra, R., Lin, S., van der Est, A., Golbeck, J. H., & Redding, K. E. (2018). Mutations in algal and cyanobacterial Photosystem I that independently affect the yield of initial charge separation in the two electron transfer cofactor branches. Biochimica et Biophysica Acta Bioenergetics, 1859, 42–55.

    Article  CAS  PubMed  Google Scholar 

  30. Kurashov, V., Gorka, M., Milanovsky, G. E., Johnson, T. W., Cherepanov, D. A., Semenov, A. Y., & Golbeck, J. H. (2018). Critical evaluation of electron transfer kinetics in P700–FA/FB, P700–FX, and P700–A1 Photosystem I core complexes in liquid and in trehalose glass. Biochimica et Biophysica Acta Bioenergetics, 1859, 1288–1301.

    Article  CAS  PubMed  Google Scholar 

  31. Srinivasan, N., & Golbeck, J. H. (2009). Protein-cofactor interactions in bioenergetic complexes: the role of the A1A and A1B phylloquinones in Photosystem I. Biochimica Biophysica Acta, 1787, 1057–1088.

    Article  CAS  Google Scholar 

  32. Cherepanov, D. A., Milanovsky, G. E., Petrova, A. A., Tikhonov, A. N., & Semenov, A. Y. (2017). Electron transfer through the acceptor side of photosystem I: Interaction with exogenous acceptors and molecular oxygen. Biochemistry, 82, 1249–1268.

    CAS  PubMed  Google Scholar 

  33. Brettel, K., & Golbeck, J. H. (1995). Spectral and kinetic characterization of electron acceptor A1 in a photosystem I core devoid of iron-sulfur centers FX, FB and FA. Photosynthesis Research, 45, 183–193.

    Article  CAS  PubMed  Google Scholar 

  34. Makita, H., & Hastings, G. (2015). Directionality of electron transfer in cyanobacterial photosystem I at 298 and 77K. FEBS Letters, 589, 1412–1417.

    Article  CAS  PubMed  Google Scholar 

  35. Cherepanov, D. A., Shelaev, I. V., Gostev, F. E., Petrova, A., Aybush, A. V., Nadtochenko, V. A., Xu, W., Golbeck, J. H., & Semenov, A. Y. (2021). Primary charge separation within the structurally symmetric tetrameric Chl2APAPBChl2B chlorophyll exciplex in photosystem I. Journal of Photochemistry and Photobiology B Biology, 217, 112154.

    Article  CAS  PubMed  Google Scholar 

  36. Xu, W., Chitnis, P., Valieva, A., Van der Est, A., Pushkar, Y. N., Krzystyniak, M., Teutloff, C., Zech, S. G., Bittl, R., Stehlik, D., Zybailov, B., Shen, G., & Golbeck, J. H. (2003). Electron transfer in cyanobacterial photosystem I. I. Physiological and spectroscopic characterization of site-directed mutants in a putative electron transfer pathway from A0 through A1 to Fx. Journal of Biological Chemistry, 278, 27864–27875.

    Article  CAS  PubMed  Google Scholar 

  37. Dobryakov, A. L., Pérez Lustres, J. L., Kovalenko, S. A., & Ernsting, N. P. (2008). Femtosecond transient absorption with chirped pump and supercontinuum probe: Perturbative calculation of transient spectra with general lineshape functions, and simplifications. Chemical Physics, 347, 127–138.

    Article  CAS  Google Scholar 

  38. Golubeva, E. N., Zubanova, E. M., Melnikov, M. Y., Gostev, F. E., Shelaev, I. V., & Nadtochenko, V. A. (2014). Femtosecond spectroscopy and TD-DFT calculations of CuCl 4 2− excited states. Dalton Transaction, 43, 17820–17827.

    Article  CAS  Google Scholar 

  39. Provencher, S. W. (1982). CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Computer Physics Communications, 27, 229–242.

    Article  Google Scholar 

  40. Heimdal, J., Jensen, K. P., Devarajan, A., & Ryde, U. (2007). The role of axial ligands for the structure and function of chlorophylls. Journal of Biological Inorganic Chemistry, 12, 49–61.

    Article  CAS  PubMed  Google Scholar 

  41. Rätsep, M., Johnson, T. W., Chitnis, P. R., & Small, G. J. (2000). The red-absorbing chlorophyll a antenna states of photosystem I: A hole-burning study of Synechocystis sp. PCC 6803 and its mutants. Journal of Physical Chemistry B, 104, 836–847.

    Article  CAS  Google Scholar 

  42. Herascu, N., Hunter, M. S., Shafiei, G., Najafi, M., Johnson, T. W., Fromme, P., & Zazubovich, V. (2016). Spectral hole burning in cyanobacterial photosystem I with P700 in oxidized and neutral states. The Journal of Physical Chemistry B, 120, 10483–10495.

    Article  CAS  PubMed  Google Scholar 

  43. Witt, H., Bordignon, E., Carbonera, D., Dekker, J. P., Karapetyan, N., Teutloff, C., Webber, A., Lubitz, W., & Schlodder, E. (2003). Species-specific differences of the spectroscopic properties of P700: analysis of the influence of non-conserved amino acid residues by site-directed mutagenesis of photosystem I from Chlamydomonas reinhardtii. Journal of Biological Chemistry, 278, 46760–46771.

    Article  CAS  PubMed  Google Scholar 

  44. Cherepanov, D. A., Shelaev, I. V., Gostev, F. E., Aybush, A. V., Mamedov, M. D., Shuvalov, V. A., Semenov, A. Y., & Nadtochenko, V. A. (2020). Generation of ion-radical chlorophyll states in the light-harvesting antenna and the reaction center of cyanobacterial photosystem I. Photosynthetic Research, 146, 1–19.

    Article  CAS  Google Scholar 

  45. Cherepanov, D. A., Gostev, F. E., Shelaev, I. V., Aibush, A. V., Mamedov, M. D., Shuvalov, V. A., Semenov, A. Y., & Nadtochenko, V. A. (2020). Visible and near infrared absorption spectrum of the excited singlet state of chlorophyll a. High Energy Chemistry, 54, 145–147.

    Article  CAS  Google Scholar 

  46. Bricker, W. P., Shenai, P. M., Ghosh, A., Liu, Z., Enriquez, M. G. M., Lambrev, P. H., Tan, H. S., Lo, C. S., Tretiak, S., Fernandez-Alberti, S., & Zhao, Y. (2015). Non-radiative relaxation of photoexcited chlorophylls: Theoretical and experimental study. Scientific Reports, 5, 1–16.

    Article  Google Scholar 

  47. Lee, Y., Gorka, M., Golbeck, J. H., & Anna, J. M. (2018). Ultrafast energy transfer involving the red chlorophylls of cyanobacterial photosystem I probed through two-dimensional electronic spectroscopy. Journal of the American Chemical Society, 140, 11631–11638.

    Article  CAS  PubMed  Google Scholar 

  48. Wasielewski, M. R., Fenton, J. M., & Govindjee. (1987). The rate of formation of P700+ A0 in photosystem I particles from spinach as measured by picosecond transient absorption spectroscopy. Photosynthetic Research, 12, 181–189.

    Article  CAS  Google Scholar 

  49. Mathis, P., Ikegami, I., & Setif, P. (1988). Nanosecond flash studies of the absorption spectrum of the photosystem I primary acceptor Ao. Photosynthesis Research, 16, 203–210.

    Article  CAS  PubMed  Google Scholar 

  50. Shuvalov, V. A., Nuijs, A. M., van Gorkom, H. J., Smit, H. W. J., & Duysens, L. N. M. (1986). Picosecond absorbance changes upon selective excitation of the primary electron donor P-700 in photosystem I. Biochimica et Biophysica Acta Bioenergetics, 850, 319–323.

    Article  CAS  Google Scholar 

  51. Dashdorj, N., Xu, W., Martinsson, P., Chitnis, P. R., & Savikhin, S. (2004). Electrochromic shift of chlorophyll absorption in photosystem I from Synechocystis sp. PCC 6803: a probe of optical and dielectric properties around the secondary electron acceptor. Biophysical Journal, 86, 3121–3130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hastings, G., Kleinherenbrink, F. A. M. M., Lin, S., McHugh, T. J., & Blankenship, R. E. (1994). Observation of the reduction and reoxidation of the primary electron acceptor in photosystem I. Biochemistry, 33, 3193–3200.

    Article  CAS  PubMed  Google Scholar 

  53. Savikhin, S., Xu, W., Chitnis, P. R., & Struve, W. S. (2000). Ultrafast primary processes in PS I from Synechocystis sp. PCC 6803: Roles of P700 and A0. Biophysical Journal, 79, 1573–1586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Byrdin, M., Rimke, I., Schlodder, E., Stehlik, D., & Roelofs, T. A. (2000). Decay kinetics and quantum yields of fluorescence in photosystem I from Synechococcus elongatus with P700 in the reduced and oxidized state: Are the kinetics of excited state decay trap-limited or transfer-limited? Biophysical Journal, 79, 992–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mi, D., Lin, S., & Blankenship, R. E. (1999). Picosecond transient absorption spectroscopy in the blue spectral region of photosystem I. Biochemistry, 38, 15231–15237.

    Article  CAS  PubMed  Google Scholar 

  56. Brettel, K., & Vos, M. H. (1999). Spectroscopic resolution of the picosecond reduction kinetics of the secondary electron acceptor A1 in photosystem I. FEBS Letters, 447, 315–317.

    Article  CAS  PubMed  Google Scholar 

  57. Cherepanov, D. A., Brady, N. G., Shelaev, I. V., Nguyen, J., Gostev, F. E., Mamedov, M. D., Nadtochenko, V. A., & Bruce, B. D. (2020). PSI-SMALP, a detergent-free cyanobacterial photosystem I, reveals faster femtosecond photochemistry. Biophysical Journal, 118, 337–351.

    Article  CAS  PubMed  Google Scholar 

  58. Chauvet, A., Dashdorj, N., Golbeck, J. H., Johnson, T. W., & Savikhin, S. (2012). Spectral resolution of the primary electron acceptor A0 in Photosystem I. Journal of Physical Chemistry B, 116, 3380–3386.

    Article  CAS  PubMed  Google Scholar 

  59. Kim, T., Kim, W., Mori, H., Osuka, A., & Kim, D. (2018). Solvent and structural fluctuations induced symmetry-breaking charge transfer in a porphyrin triad. Journal of Physical Chemistry C, 122, 19409–19415.

    Article  CAS  Google Scholar 

  60. Byrdin, M., Santabarbara, S., Gu, F., Fairclough, W. V., Heathcote, P., Redding, K., & Rappaport, F. (2006). Assignment of a kinetic component to electron transfer between iron-sulfur clusters FX and FA/B of Photosystem I. Biochimica et Biophysica Acta - Bioenergetics, 1757, 1529–1538.

    Article  CAS  Google Scholar 

  61. Santabarbara, S., Jasaitis, A., Byrdin, M., Gu, F., Rappaport, F., & Redding, K. (2008). Additive effect of mutations affecting the rate of phylloquinone reoxidation and directionality of electron transfer within photosystem I. Photochem. Photobiol., 84, 1381–1387.

    Article  CAS  PubMed  Google Scholar 

  62. Trissl, H. W. (1997). Determination of the quenching efficiency of the oxidized primary donor of Photosystem I, P700+: Implications for the trapping mechanism. Photosynthesis Research, 54, 237–240.

    Article  CAS  Google Scholar 

  63. Brettel, K. (1997). Electron transfer and arrangement of the redox cofactors in photosystem I. Biochimica et Biophysica Acta Bioenergetics, 1318, 322–373.

    Article  CAS  Google Scholar 

  64. Schlodder, E., Çetin, M., Byrdin, M., Terekhova, I. V., & Karapetyan, N. V. (2005). P700 +- and 3P700-induced quenching of the fluorescence at 760 nm in trimeric Photosystem I complexes from the cyanobacterium Arthrospira platensis. Biochimica et Biophysica Acta Bioenergetics, 1706, 53–67.

    Article  CAS  Google Scholar 

  65. Lebedev, A. Y., Filatov, M. A., Cheprakov, A. V., & Vinogradov, S. A. (2008). Effects of structural deformations on optical properties of tetrabenzoporphyrins: Free-bases and Pd complexes. Journal of Physical Chemistry A, 112, 7723–7733.

    Article  CAS  PubMed  Google Scholar 

  66. Chang, M. H., Hoffmann, M., Anderson, H. L., & Herz, L. M. (2008). Dynamics of excited-state conformational relaxation and electronic delocalization in conjugated porphyrin oligomers. Journal of the American Chemical Society, 130, 10171–10178.

    Article  CAS  PubMed  Google Scholar 

  67. Gentemann, S., Medforth, C. J., Forsyth, T. P., Nurco, D. J., Smith, K. M., Fajer, J., & Holten, D. (1994). Photophysical properties of conformationally distorted metal-free porphyrins investigation into the deactivation mechanisms of the lowest excited singlet state. Journal of American Chemical Society, 116, 7363–7368.

    Article  CAS  Google Scholar 

  68. Brettel, K., & Sétif, P. (1987). Magnetic-field effects on primary reactions in Photosystem I. Biochimica Biophysica Acta - Bioenergetics, 893, 109–114.

    Article  CAS  Google Scholar 

  69. Makita, H., & Hastings, G. (2017). Inverted-region electron transfer as a mechanism for enhancing photosynthetic solar energy conversion efficiency. Proceedings of the National Academy of Sciences of the United States of America, 114, 9267–9272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Guo, Y., Ma, Z., Niu, X., Zhang, W., Tao, M., Guo, Q., Wang, Z., & Xia, A. (2019). Bridge-mediated charge separation in isomeric N-annulated perylene diimide dimers. Journal of the American Chemical Society, 141, 12789–12796.

    Article  CAS  PubMed  Google Scholar 

  71. Ostroumov, E. E., Götze, J. P., Reus, M., Lambrev, P. H., & Holzwarth, A. R. (2020). Characterization of fluorescent chlorophyll charge-transfer states as intermediates in the excited state quenching of light-harvesting complex II. Photosynthesis Research, 144, 171–193.

    Article  CAS  PubMed  Google Scholar 

  72. Connolly, J. S., Janzen, A. F., & Samuel, E. B. (1982). Fluorescence lifetimes of chlorophyll a: Solvent, concentration and oxygen dependence. Photochemistry and Photobiology, 36, 559–563.

    Article  CAS  Google Scholar 

  73. Gouterman, M. (1961). Spectra of porphyrins. Journal of Molecular Spectroscopy, 6, 138–163.

    Article  CAS  Google Scholar 

  74. Abramczyk, H. (2012). Mechanisms of energy dissipation and ultrafast primary events in photostable systems: H-bond, excess electron, biological photoreceptors. Vibrational Spectroscopy, 58, 1–11.

    Article  CAS  Google Scholar 

  75. Rodriguez, J., Kirmaier, C., & Holten, D. (1991). Time-resolved and static optical properties of vibrationally excited porphyrins. The Journal of Chemical Physics, 94, 6020–6029.

    Article  CAS  Google Scholar 

  76. Nakanishi, T., Ohkubo, K., Kojima, T., & Fukuzumi, S. (2009). Reorganization energies of diprotonated and saddle-distorted porphyrins in photoinduced electron-transfer reduction controlled by conformational distortion. Journal of the American Chemical Society, 131, 577–584.

    Article  CAS  PubMed  Google Scholar 

  77. Sazanovich, I. V., Galievsky, V. A., Van Hoek, A., Schaafsma, T. J., Malinovskii, V. L., Holten, D., & Chirvony, V. S. (2001). Photophysical and structural properties of saddle-shaped free base porphyrins: Evidence for an ‘orthogonal’ dipole moment. The Journal of Physical Chemistry B, 105, 7818–7829.

    Article  CAS  Google Scholar 

  78. Röder, B., Büchner, M., Rückmann, I., & Senge, M. O. (2010). Correlation of photophysical parameters with macrocycle distortion in porphyrins with graded degree of saddle distortion. Photochemical & Photobiological Sciences, 9, 1152–1158.

    Article  CAS  Google Scholar 

  79. Gentemann, S., Medforth, C. J., Ema, T., Nelson, N. Y., Smith, K. M., Fajer, J., & Holten, D. (1995). Unusual picosecond 1(π, π*) deactivation of ruffled nonplanar porphyrins. Chemical Physics Letters, 245, 441–447.

    Article  CAS  Google Scholar 

  80. Yin, S., Dahlbom, M. G., Canfield, P. J., Hush, N. S., Kobayashi, R., & Reimers, J. R. (2007). Assignment of the Qy, absorption spectrum of photosystem-I from Thermosynechococcus elongatus based on CAM-B3LYP calculations at the PW91-optimized protein structure. The Journal of Physical Chemistry B, 111, 9923–9930.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation Grant RSF 19-14-00366 to DAC and AYS and by the US National Science Foundation under grant MCB-1613022 to JHG. Cell growth and isolation of the PS I complexes was funded by NSF EPSCoR (NSF(2010)-PFUND-217) and the Louisiana RCS Program (LEQSF(2013-16)-RD-A-15) to WX. AYS acknowledges partial support from Lomonosov Moscow State University Program of Development. We thank Dr. Vasily Kurashov and Dr. Michael Gorka for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry A. Cherepanov.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Pushing the limits of flash photolysis to unravel the secrets of biological electron and proton transfer- a topical issue in honour of Klaus Brettel.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 828 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherepanov, D.A., Shelaev, I.V., Gostev, F.E. et al. Symmetry breaking in photosystem I: ultrafast optical studies of variants near the accessory chlorophylls in the A- and B-branches of electron transfer cofactors. Photochem Photobiol Sci 20, 1209–1227 (2021). https://doi.org/10.1007/s43630-021-00094-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00094-y

Keywords

Navigation