Skip to main content
Log in

Exploring the ability of low-level laser irradiation to reduce myonecrosis and increase Myogenin transcription after Bothrops jararacussu envenomation

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Envenoming caused by snakebites is a very important neglected tropical disease worldwide. The myotoxic phospholipases present in the bothropic venom disrupt the sarcolemma and compromise the mechanisms of energy production, leading to myonecrosis. Photobiomodulation therapy (PBMT) has been used as an effective tool to treat diverse cases of injuries, such as snake venom-induced myonecrosis. Based on that, the aim of this study was to analyze the effects of PBMT through low-level laser irradiation (904 nm) on the muscle regeneration after the myonecrosis induced by Bothrops jararacussu snake venom (Bjssu) injection, focusing on myogenic regulatory factors expression, such as Pax7, MyoD, and Myogenin (MyoG). Male Swiss mice (Mus musculus), 6–8-week-old, weighing 22 ± 3 g were used. Single sub-lethal Bjssu dose or saline was injected into the right mice gastrocnemius muscle. At 3, 24, 48, and 72 h after injections, mice were submitted to PBMT treatment. When finished the periods of 48 and 72 h, mice were euthanized and the right gastrocnemius were collected for analyses. We observed extensive inflammatory infiltrate in all the groups submitted to Bjssu injections. PBMT was able to reduce the myonecrotic area at 48 and 72 h after envenomation. There was a significant increase of MyoG mRNA expression at 72 h after venom injection. The data suggest that beyond the protective effect promoted by PBMT against Bjssu-induced myonecrosis, the low-level laser irradiation was able to stimulate the satellite cells, thus enhancing the muscle repair by improving myogenic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The data sets generated and analyzed during the current study are available from the corresponding author (MACH; hofling@unicamp.br) upon request.

References

  1. Chippaux, J. P. (2017). Snakebite envenomation turns again into a neglected tropical disease! Journal of Venomous Animals and Toxins Including Tropical Diseases. https://doi.org/10.1186/s40409-017-0127-6

    Article  Google Scholar 

  2. Gutiérrez, J. M., Calvete, J. J., Habib, A. G., Harrison, R. A., Williams, D. J., & Warrell, D. A. (2017). Snakebite envenoming. Nature Reviews Disease Primers. https://doi.org/10.1038/nrdp.2017.63

    Article  PubMed  Google Scholar 

  3. Fan, H. W., & Cardoso, J. L. (1995). Clinical toxicology of snake bites in South America. In J. Meier & J. White (Eds.), Handbook of clinical toxicology of animal venoms and poisons.CRC Press. https://doi.org/10.1201/9780203719442

    Chapter  Google Scholar 

  4. Gutiérrez, J. M. (1995). Clinical toxicology of snakebite in Central America. In J. Meier & J. White (Eds.), Handbook of clinical toxicology of animal venoms and poisons.CRC Press. https://doi.org/10.1201/9780203719442

    Chapter  Google Scholar 

  5. Schaffazick, N., Amaral, L. S., Fonseca, T. F., Tomaz, M. A., Gaban, G. A., Borges, P. A., Calil-Elias, S., Nöel, F., Melo, P. A., Quintas, L. E., & Cunha, V. M. (2010). Effect of heparin treatment on the expression and activity of different ion-motive P-type ATPase isoforms from mouse extensor digitorum longus muscle during degeneration and regeneration after Bothrops jararacussu venom injection. Toxicon. https://doi.org/10.1016/j.toxicon.2009.06.032

    Article  PubMed  Google Scholar 

  6. Hamsi-Brandeburgo, M. I., Queiroz, L. S., Santo-Neto, H., Rodrigues-Simioni, L., & Giglio, J. R. (1988). Fractionation of Bothrops jararacussu snake venom: Partial chemical characterization and biological activity of bothropstoxin. Toxicon. https://doi.org/10.1016/0041-0101(88)90244-9

    Article  Google Scholar 

  7. Andrião-Escarso, S. H., Soares, A. M., Rodrigues, V. M., Angulo, Y., Díaz, C., Lomonte, B., Gutiérrez, J. M., & Giglio, J. R. (2000). Myotoxic phospholipases A(2) in bothrops snake venoms: Effect of chemical modifications on the enzymatic and pharmacological properties of bothropstoxins from Bothrops jararacussu. Biochimie. https://doi.org/10.1016/s0300-9084(00)01150-0

    Article  PubMed  Google Scholar 

  8. De-Simone, S. G., Napoleão-Pego, P., Teixeira-Pinto, L. A. L., Santos, J. D. L., De-Simone, T. S., Melgarejo, A. R., Aguiar, A. S., & Marchi-Salvador, D. P. (2013). Linear B-cell epitopes in BthTX-1, BthTX-II and BthA-1, phospholipase A2’s from Bothrops jararacussu snake venom, recognized by therapeutically neutralizing commercial horse antivenom. Toxicon. https://doi.org/10.1016/j.toxicon.2013.06.004

    Article  PubMed  Google Scholar 

  9. Gutiérrez, J. M., & Lomonte, B. (1989). Local tissue damage induced by Bothrops snake venoms. A review. Memórias do Instituto Butantan, 51(4), 211–223

    Google Scholar 

  10. Gutiérrez, J. M., & Ownby, C. L. (2003). Skeletal muscle degeneration induced by venom phospholipases A2: Insights into the mechanisms of local and systemic myotoxicity. Toxicon. https://doi.org/10.1016/j.toxicon.2003.11.005

    Article  PubMed  Google Scholar 

  11. Kenzo-Kagawa, B., Vieira, W. F., Cogo, J. C., & da Cruz-Höfling, M. A. (2020). Muscle proteolysis via ubiquitin-proteasome system (UPS) is activated by BthTx-I Lys49 PLA2 but not by BthTx-II Asp49 PLA2 and Bothrops jararacussu venom. Toxicology and Applied Pharmacology. https://doi.org/10.1016/j.taap.2020.115119

    Article  PubMed  Google Scholar 

  12. WHO. (2010). Guidelines for the production, control and regulation of snake antivenom immunoglobulins. World Health Organization; 2010. http://www.who.int/bloodproducts/snake_antivenoms/snakeantivenomguideline.pdf. Accessed 08 Jan 2019.

  13. Brazil, V. (1911). A defesa contra o ofidismo. (p. 152). Pocai & Weiss.

    Google Scholar 

  14. Rosenfeld, G. (1971). Symptomatology, pathology, and treatment of snake bites in South America, p. 345–384. In W. Bucherl, E. E. Buckley, & V. Deulofeu (Eds.), Venomous animals and their venoms. (pp. 345–384). Academic Press.

    Chapter  Google Scholar 

  15. Hurme, T., & Kalimo, H. (1992). Activation of myogenic precursor cells after muscle Injury. Medicine and Science in Sports and Exercise, 24(2), 197–205 PMID: 1549008.

    Article  CAS  Google Scholar 

  16. Holterman, C. E., & Rudnicki, M. A. (2005). Molecular regulation of satellite cell function. Seminars in Cell and Developmental Biology. https://doi.org/10.1016/j.semcdb.2005.07.004

    Article  PubMed  Google Scholar 

  17. Filippin, L. I., Cuevas, M. J., Lima, E., Marroni, N. P., Gonzalez-Gallego, J., & Xavier, R. M. (2011). Nitric oxide regulates the repair of injured skeletal muscle. Nitric Oxide. https://doi.org/10.1016/j.niox.2010.11.003

    Article  PubMed  Google Scholar 

  18. Chal, J., & Pourquié, O. (2017). Making muscle: Skeletal myogenesis in vivo and in vitro. Development. https://doi.org/10.1242/dev.151035

    Article  PubMed  PubMed Central  Google Scholar 

  19. Addicks, G. C., Brun, C. E., Sincennes, M.-C., Saber, J., Porter, C. J., Stewart, A. F., Ernst, P., & Rudnicki, M. A. (2019). MLL1 is required for PAX7 expression and satellite cell self-renewal in mice. Nature Communications. https://doi.org/10.1038/s41467-019-12086-9

    Article  PubMed  PubMed Central  Google Scholar 

  20. Relaix, F., Rocancourt, D., Mansouri, A., & Buckingham, M. (2005). A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature. https://doi.org/10.1038/nature03594

    Article  PubMed  Google Scholar 

  21. Asfour, H. A., Allouh, M. Z., & Said, R. S. (2018). Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery. Experimental Biology and Medicine. https://doi.org/10.1177/1535370217749494

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hyatt, J. P., McCall, G. E., Kander, E. M., Zhong, H., Roy, R. R., & Huey, K. A. (2008). PAX3/7 expression coincides with MyoD during chronic skeletal muscle overload. Muscle and Nerve. https://doi.org/10.1002/mus.21006

    Article  PubMed  Google Scholar 

  23. Wang, Y., Zhang, R. P., Zhao, Y. M., Li, Q. Q., Yan, X. P., Liu, J. Y., Gou, H., & Li, L. (2015). Effects of Pax3 and Pax7 expression on muscle mass in the Pekin duck (Anas platyrhynchos domestica). Genetics and Molecular Research. https://doi.org/10.4238/2015.September.28.1

    Article  PubMed  Google Scholar 

  24. Hernández-Hernández, J. M., García-González, E. G., Brun, C. E., & Rudnicki, M. A. (2017). The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Seminars in Cell and Developmental Biology. https://doi.org/10.1016/j.semcdb.2017.11.010

    Article  PubMed  Google Scholar 

  25. Zammit, P. S. (2017). Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Seminars in Cell and Developmental Biology. https://doi.org/10.1016/j.semcdb.2017.11.011

    Article  PubMed  Google Scholar 

  26. Ganassi, M., Badodi, S., Quiroga, H. P. O., Zammit, P. S., Hinits, Y., & Hughes, S. M. (2018). Myogenin promotes myocyte fusion to balance fibre number and size. Nature Communications. https://doi.org/10.1038/s41467-018-06583-6

    Article  PubMed  PubMed Central  Google Scholar 

  27. Karu, T. I., Pyatibrat, L. V., Kolyakov, S. F., & Afanasyeva, N. I. (2005). Absorption measurements of a cell monolayer relevant to phototherapy: Reduction of cytochrome c oxidase under near IR radiation. Journal of Photochemistry and Photobiology B: Biology. https://doi.org/10.1016/j.jphotobiol.2005.07.002

    Article  Google Scholar 

  28. Karu, T. I. (2010). Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life. https://doi.org/10.1002/iub.359

    Article  PubMed  Google Scholar 

  29. Mason, M. G., Nicholls, P., & Cooper, C. E. (2010). Re-evaluation of the near infrared spectra of mitochondrial cytochrome c oxidase: Implications for non-invasive in vivo monitoring of tissues. Biochimica et Biophysica Acta. https://doi.org/10.1016/j.bbabio.2014.08.005

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hamblin, M. R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophysics. https://doi.org/10.3934/biophy.2017.3.337

    Article  PubMed  PubMed Central  Google Scholar 

  31. de Freitas, L. F., & Hamblin, M. R. (2016). Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE Journal of Selected Topics in Quantum Electronics. https://doi.org/10.1109/JSTQE.2016.2561201

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dourado, D. M., Fávero, S., Baranauskas, V., & da Cruz-Höfling, M. A. (2003). Effects of the Ga–As laser irradiation on myonecrosis caused by Bothrops moojeni snake venom. Lasers in Surgery and Medicine. https://doi.org/10.1002/lsm.10237

    Article  PubMed  Google Scholar 

  33. Barbosa, A. M., Villaverde, A. B., Guimarães-Souza, L., Ribeiro, W., Cogo, J. C., & Zamunér, S. R. (2008). Effect of low-level laser therapy in the inflammatory response induced by Bothrops jararacussu snake venom. Toxicon. https://doi.org/10.1016/j.toxicon.2008.02.007

    Article  PubMed  Google Scholar 

  34. Doin-Silva, R., Baranauskas, V., Rodrigues-Simioni, L., & da Cruz-Höfling, M. A. (2009). The ability of low level laser therapy to prevent muscle tissue damage induced by snake venom. Photochemistry and Photobiology. https://doi.org/10.1111/j.1751-1097.2008.00397.x

    Article  PubMed  Google Scholar 

  35. Nadur-Andrade, N., Barbosa, A. M., Carlos, F. P., Lima, C. J., Cogo, J. C., & Zamunér, S. R. (2012). Effects of photobiostimulation on edema and hemorrhage induced by Bothrops moojeni venom. Lasers in Medical Science. https://doi.org/10.1007/s10103-011-0914-1

    Article  PubMed  Google Scholar 

  36. Vieira, W. F., Kenzo-Kagawa, B., Cogo, J. C., Baranauskas, V., & da Cruz-Höfling, M. A. (2016). Low-level laser therapy (904 nm) counteracts motor deficit of mice hind limb following skeletal muscle injury caused by snakebite-mimicking intramuscular venom injection. PLoS ONE. https://doi.org/10.1371/journal.pone.0158980

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dourado, D. M., Matias, R., Barbosa-Ferreira, M., Silva, B. A. K., Muller, J. A. I., Vieira, W. F., & da Cruz-Höfling, M. A. (2017). Effects of photobiomodulation therapy on Bothrops moojeni snake-envenomed gastrocnemius of mice using enzymatic biomarkers. Lasers in Medical Science. https://doi.org/10.1007/s10103-017-2252-4

    Article  PubMed  Google Scholar 

  38. Vieira, W. F., Kenzo-Kagawa, B., Britto, M. H. M., Ceragioli, H. J., Sakane, K. K., Baranauskas, V., & da Cruz-Höfling, M. A. (2018). Vibrational spectroscopy of muscular tissue intoxicated by snake venom and exposed to photobiomodulation therapy. Lasers in Medical Science. https://doi.org/10.1007/s10103-017-2389-1

    Article  PubMed  Google Scholar 

  39. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. https://doi.org/10.1006/meth.2001.1262

    Article  PubMed  Google Scholar 

  40. Pfaffl, M. W., Tichopad, A., Prgomet, C., & Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—EXCEL-based tool using pair-wise correlations. Biotechnology Letters. https://doi.org/10.1023/B:BILE.0000019559.84305.47

    Article  PubMed  Google Scholar 

  41. Allbrook, D. (1981). Skeletal muscle regeneration. Muscle and Nerve. https://doi.org/10.1002/mus.880040311

    Article  PubMed  Google Scholar 

  42. Grounds, M. D., Garret, K. L., Lai, M. C., Wright, W. E., & Beilharz, M. W. (1992). Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and MyoG probes. Cell and Tissue Research. https://doi.org/10.1007/BF00318695

    Article  PubMed  Google Scholar 

  43. Chargé, S. B. P., & Rudnicki, M. A. (2004). Cellular and molecular regulation of muscle regeneration. Physiological Reviews. https://doi.org/10.1152/physrev.00019.2003

    Article  PubMed  Google Scholar 

  44. Kharraz, Y., Guerra, J., Mann, C. J., Serrano, A. L., & Muñoz-Cánoves, P. (2013). Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediators of Inflammation. https://doi.org/10.1155/2013/491497

    Article  PubMed  PubMed Central  Google Scholar 

  45. Teixeira, C. F. P., Zamuner, S. R., Zuliani, J. P., Fernandes, C. M., da Cruz-Höfling, M. A., Fernandes, I., Chaves, F., & Gutiérrez, J. M. (2003). Neutrophils do not contribute to local tissue damage, but play a key role in skeletal muscle regeneration, in mice injected with Bothrops asper snake venom. Muscle and Nerve. https://doi.org/10.1002/mus.10453

    Article  PubMed  Google Scholar 

  46. Teixeira, C. F. P., Chaves, F., Zamunér, S. R., Fernandes, C. M., Zuliani, J. P., da Cruz-Höfling, M. A., Fernandes, I., & Gutiérrez, J. M. (2005). Effects of neutrophil depletion in the local pathological alterations and muscle regeneration in mice injected with Bothrops jararaca snake venom. International Journal of Experimental Pathology. https://doi.org/10.1111/j.0959-9673.2005.00419.x

    Article  PubMed  PubMed Central  Google Scholar 

  47. Boeno, C. N., Paloschi, M. V., Lopes, J. A., Pires, W. L., Setúbal, S. S., Evangelista, J. R., Soares, A. M., & Zuliani, J. P. (2020). Inflammasome activation induced by a snake venom Lys49-phospholipase A2 homologue. Toxins. https://doi.org/10.3390/toxins12010022

    Article  Google Scholar 

  48. Zheng, D., Liwinski, T., & Elinav, E. (2020). Inflammasome activation and regulation: Toward a better understanding of complex mechanisms. Cell Discov. https://doi.org/10.1038/s41421-020-0167-x

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gouveia, V. A., Pisete, F. R. F. S., Wagner, C. L. R., Dalboni, M. A., Oliveira, A. P. L., Cogo, J. C., & Zamuner, S. R. (2020). Photobiomodulation reduces cell death and cytokine production in C2C12 cells exposed to Bothrops venoms. Lasers in Medical Science. https://doi.org/10.1007/s10103-019-02884-4

    Article  PubMed  Google Scholar 

  50. Barbosa, A. M., Villaverde, A. B., Guimarães-Sousa, L., Soares, A. M., Zamunér, S. F., Cogo, J. C., & Zamunér, S. R. (2010). Low-level laser therapy decreases local effects induced by myotoxins isolated from Bothrops jararacussu snake venom. Journal of Venomous Animals and Toxins Including Tropical Diseases. https://doi.org/10.1590/S1678-91992010000300014

    Article  Google Scholar 

  51. Amorim, F. G., Costa, T. R., Baiwir, D., De Pauw, E., Quinton, L., & Sampaio, S. V. (2018). Proteopeptidomic, functional and immunoreactivity characterization of Bothrops moojeni snake venom: Influence of snake gender on venom composition. Toxins (Basel). https://doi.org/10.3390/toxins10050177

    Article  PubMed Central  Google Scholar 

  52. Assis, L., Moretti, A. I., Abrahão, T. B., de Souza, H. P., Hamblin, M. R., & Parizotto, N. A. (2013). Low-level laser therapy (808 nm) contributes to muscle regeneration and prevents fibrosis in rat tibialis anterior muscle after cryolesion. Lasers in Medical Science. https://doi.org/10.1007/s10103-012-1183-3

    Article  PubMed  Google Scholar 

  53. Brunelli, R. M., Rodrigues, N. C., Ribeiro, D. A., Fernandes, K., Magri, A., Assis, L., Parizotto, N. A., Cliquet, A., Jr., Renno, A. C., & Abreu, D. C. (2014). The effects of 780-nm low-level laser therapy on muscle healing process after cryolesion. Lasers in Medical Science. https://doi.org/10.1007/s10103-013-1277-6

    Article  PubMed  Google Scholar 

  54. Relaix, F., & Zammit, P. S. (2012). Satellite cells are essential for skeletal muscle regeneration: The cell on the edge returns centre stage. Development. https://doi.org/10.1242/dev.069088

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kuang, S., & Rudnicki, M. A. (2008). The emerging biology of satellite cells and their therapeutic potential. Trends in Molecular Medicine. https://doi.org/10.1016/j.molmed.2007.12.004

    Article  PubMed  Google Scholar 

  56. Tedesco, F. S., Dellavalle, A., Diaz-Manera, J., Messina, G., & Cossu, G. (2010). Repairing skeletal muscle: Regenerative potential of skeletal muscle stem cells. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI40373

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sambasivan, R., & Tajbakhsh, S. (2015). Adult skeletal muscle stem cells. Results and Problems in Cell Differentiation. https://doi.org/10.1007/978-3-662-44608-9_9

    Article  PubMed  Google Scholar 

  58. Trajano, L. S., Stumbo, A. C., Silva, C. L., Mencalha, A. L., & Fonseca, A. S. (2016). Low-level infrared laser modulates muscle repair and chromosome stabilization genes in myoblasts. Lasers in Medical Science. https://doi.org/10.1007/s10103-016-1956-1

    Article  Google Scholar 

  59. Lepper, C., Conway, S. J., & Fan, C. M. (2009). Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature. https://doi.org/10.1038/nature08209

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ehrhardt, J., & Morgan, J. (2005). Regenerative capacity of skeletal muscle. Current Opinion in Neurology. https://doi.org/10.1097/01.wco.0000177382.62156.82

    Article  PubMed  Google Scholar 

  61. Shefer, G., Oron, U., Irintchev, A., Wernig, A., & Halevy, O. (2001). Skeletal muscle cell activation by low-energy laser irradiation: A role for the MAPK/ERK pathway. Journal of Cellular Physiology. https://doi.org/10.1002/1097-4652(2001)9999:9999%3c::AID-JCP1053%3e3.0.CO;2-9

    Article  PubMed  Google Scholar 

  62. Shefer, G., Partridge, T. A., Heslop, L., Gross, J. G., Oron, U., & Halevy, O. (2002). Low-energy laser irradiation promotes the survival and cells cycle entry of skeletal muscle satellite cells. Journal of Cell Science, 115(7), 1461–1469 PMID: 11896194.

    Article  CAS  Google Scholar 

  63. Füchtbauer, E. M., & Westphal, H. (1992). MyoD and myogenin are coexpressed in regenerating skeletal muscle of the mouse. Developmental Dynamics. https://doi.org/10.1002/aja.1001930106

    Article  PubMed  Google Scholar 

  64. Marsh, D. R., Criswell, D. S., Carson, J. A., & Booth, F. W. (1997). Myogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats. Journal of Applied Physiology. https://doi.org/10.1152/jappl.1997.83.4.1270

    Article  PubMed  Google Scholar 

  65. Mesquita-Ferrari, R. A., Alves, A. N., Cardoso, V. O., Artilheiro, P. P., Bussadori, S. K., Rocha, L. A., Nunes, F. D., & Fernandes, K. P. S. (2015). Low-level laser irradiation modulates cell viability and creatine kinase activity in C2C12 muscle cells during the differentiation process. Lasers in Medical Science. https://doi.org/10.1007/s10103-015-1715-8

    Article  PubMed  Google Scholar 

  66. Silva, L. M. G., Silva, C. A. A., Silva, A., Vieira, R. P., Mesquita-Ferrari, R. A., Cogo, J. C., & Zamunér, S. R. (2016). Photobiomodulation protects and promotes differentiation of C2C12 myoblast cells exposed to snake venom. PLoS ONE. https://doi.org/10.1371/journal.pone.0152890

    Article  PubMed  PubMed Central  Google Scholar 

  67. Blais, A., Tsikitis, M., Acosta-Alvear, D., Sharan, R., Kluger, Y., & Dynlacht, B. D. (2005). An initial blueprint for myogenic differentiation. Genes and Development. https://doi.org/10.1101/gad.1281105

    Article  PubMed  Google Scholar 

  68. Alves, A. N., Ribeiro, B. G., Fernandes, K. P. S., Souza, N. H. C., Rocha, L. A., Nunes, F. D., Bussadori, S. K., & Mesquita-Ferrari, R. A. (2016). Comparative effects of low-level laser therapy pre- and post-injury on mRNA expression of MyoD, myogenin, and IL-6 during the skeletal muscle repair. Lasers in Medical Science. https://doi.org/10.1007/s10103-016-1908-9

    Article  PubMed  Google Scholar 

  69. Huang, Y.-Y., Sharma, S. K., Carroll, J., & Hamblin, M. R. (2011). Biphasic dose response in low level light therapy—An update. Dose Response. https://doi.org/10.2203/dose-response.11-009.Hamblin

    Article  PubMed  PubMed Central  Google Scholar 

  70. Khacho, M., & Slack, R. S. (2017). Mitochondrial activity in the regulation of stem cell self-renewal and differentiation. Current Opinion in Cell Biology. https://doi.org/10.1016/j.ceb.2017.11.003

    Article  PubMed  Google Scholar 

  71. Xu, X., Duan, S., Yi, F., Ocampo, A., Liu, G.-H., & Belmonte, J. C. I. (2013). Mitochondrial regulation in pluripotent stem cells. Cell Metabolism. https://doi.org/10.1016/j.cmet.2013.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  72. Karu, T. I. (2008). Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochemistry and Photobiology. https://doi.org/10.1111/j.1751-1097.2008.00394.x

    Article  PubMed  Google Scholar 

  73. Koch, S., Tugues, S., Li, X., Gualandi, L., & Claesson-Welsh, L. (2011). Signal transduction by vascular endothelial growth receptors. Biochem. https://doi.org/10.1042/BJ20110301

    Article  Google Scholar 

  74. Germani, A., Di Carlo, A., Mangoni, A., Straino, S., Giacinti, C., Turrini, P., Biglioli, P., & Capogrossi, M. C. (2003). Vascular endothelial growth factor modulates skeletal myoblast function. American Journal of Pathology. https://doi.org/10.1016/S0002-9440(10)63499-2

    Article  Google Scholar 

  75. Dourado, D. M., Fávero, S., Matias, R., Carvalho, P. T. C., & da Cruz-Höfling, M. A. (2011). Low-level laser therapy promotes vascular endothelial growth factor receptor-1 expression in endothelial and nonendothelial cells of mice gastrocnemius exposed to snake venom. Photochemistry and Photobiology. https://doi.org/10.1111/j.1751-1097.2010.00878.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from São Paulo Research Foundation (FAPESP) (Proc. 05/53625-1) (http://www.fapesp.br/) and National Council for Scientific and Technological Development (CNPq, Grants #488792/2011 and #486142/2012-4) (http://www.cnpq.br/). MACH is an IA research fellow from CNPq (Grant #305099/2011-6); WFV was a Master Sci. student granted with a scholarship from Coordination of Improvement of Higher Education Personnel (CAPES) (http://www.capes.gov.br/) at the Department of Semiconductors, Instruments and Photonics (FEEC-UNICAMP), and Department of Biochemistry and Tissue Biology (IB-UNICAMP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We would like to thank Professor Vitor Baranauskas (Brazilian Academy of Sciences, in memoriam) by his contribution to science in the last years and for all support given for the realization of this study. Professor Baranauskas passed way in October, 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Alice da Cruz-Höfling.

Ethics declarations

Conflict of interest

The authors have stated explicitly that there are no conflicts of interest in connection with this article.

Ethics approval

All experiments were done in accordance to ethical guidelines of the Brazilian National Council for Animal Experimentation Control (CONCEA) and the Brazilian College of Animal Experimentation (COBEA), and were approved by the University of Campinas (UNICAMP) institutional Committee for Ethics in Animal Use (CEUA/UNICAMP, protocol no. 2950-1). Good laboratory practices were followed according to the international standards for animal experimentation, such as the National Institutes of Health (NIH) guides for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978), and comply with the ARRIVE guidelines.

Additional information

Vitor Baranauskas: Deceased.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, W.F., Kenzo-Kagawa, B., Alvares, L.E. et al. Exploring the ability of low-level laser irradiation to reduce myonecrosis and increase Myogenin transcription after Bothrops jararacussu envenomation. Photochem Photobiol Sci 20, 571–583 (2021). https://doi.org/10.1007/s43630-021-00041-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00041-x

Keywords

Navigation