Skip to main content
Log in

Bending analysis of two different types of functionally graded material porous sandwich plates

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a new functionally graded material (FGM) porous sandwich plate analysis model considering pores with only four variables is proposed. It is applied to the nonlinear bending of two different types of FGM porous sandwich plates under mechanical loading, and the bending of two different types of FGM porous sandwich plates is compared. The governing equations are obtained through the principle of virtual work. The simple supported FGM porous sandwich plates are solved using the Navier method. The obtained numerical results are compared with the results in the literature to verify the accuracy of the theory in this paper. Finally, the effects of volume fraction index, porosity, layer thickness ratio, side-thickness ratio and symmetry on the mechanical bending properties of FGM porous sandwich plates are studied in detail. By comparing the bending characteristics of two types of FGM porous sandwich plates under different influencing factors, it is found that the bending characteristics of different FGM porous sandwich plate types are also very different. This has great guiding significance for the design of FGM porous sandwich plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gao, W., Liu, Y., Qin, Z, et al.: Wave propagation in smart sandwich plates with functionally graded nanocomposite porous core and piezoelectric layers in multi-physics environment. Int. J. Appl. Mech., 2250071 (2022).

  2. Zhicheng, H., Jinbo, P., Ziheng, Y., Xingguo, W., Fulei, C.: Transverse vibration of viscoelastic sandwich structures: finite element modeling and experimental study. Materials 14(24), 7751 (2021)

    Article  Google Scholar 

  3. Zhicheng, H., Yuhang, M., Anna, D., Mengna, H., Xingguo, W., Fulei, C.: Active vibration control of piezoelectric sandwich plates. Materials 15(11), 3907 (2022)

    Article  Google Scholar 

  4. Mohamed, S., Bouazza, F., Abdelouahed, T., Mahmoud, S.R.: A new quasi-3D HSDT for buckling and vibration of FG plate. Struct. Eng. Mech. 64(6), 737–749 (2017).

  5. Houari, M.S.A., Benyoucef, S., Mechab, I., Tounsi, A., Adda Bedia, E. A.: Two-variable refined plate theory for thermoelastic bending analysis of functionally graded sandwich plates. J. Thermal Stresses 34, 315–334 (2011).

  6. Abdelaziz, H.H., Atmane, H.A., Mechab, I., Boumia, L., Tounsi, A., El Abbas, A.B.: Static analysis of functionally graded sandwich plates using an efficient and simple refined theory. Chin. J. Aeronaut. 24, 434–448 (2011)

    Article  Google Scholar 

  7. Jingchuan, Z., Zhonghong, L., Zhongda, Y., Jaeho, J., Sooyoung, L.: Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy. Mater. Chem. Phys. 68, 130–135 (2001)

    Article  Google Scholar 

  8. Lazreg, H., Mehmet, A.: Free vibration analysis of FG porous sandwich plates under various boundary conditions. J. Appl. Comput. Mech. 7(2), 505–519 (2021)

    Google Scholar 

  9. Lazreg, H., Mehmet, A., Nafifissa, Z.: Natural frequency analysis of imperfect FG sandwich plates resting on Winkler-Pasternak foundation. Mater. Today Proc. 53, 153–160 (2022)

    Article  Google Scholar 

  10. Tran, Q.Q., Do Thi, T.H., Nguyen, D.D.: Analytical solutions for nonlinear vibration of porous functionally graded sandwich plate subjected to blast loading. Thin-Walled Struct. 170, 108606 (2022)

    Article  Google Scholar 

  11. Abhilash, K., Shashank, P., Vishesh, R.K.: Nonlinear transient analysis of porous P-FGM and S-FGM sandwich plates and shell panels under blast loading and thermal environment. Thin-Walled Struct. 173, 108985 (2022)

    Article  Google Scholar 

  12. Emad, K.N., Sadeq, H.B., Muhannad, A.-W.: Analytical and numerical investigation of buckling behavior of functionally graded sandwich plate with porous core. J. Appl. Sci. Eng. 25(2), 339–347 (2021)

    Google Scholar 

  13. Esmaeilzadeh, M., Golmakani, M.E., Luo, Y., Bodaghi, M.: Transient behavior of imperfect bi-directional functionally graded sandwich plates under moving loads. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01521-5

    Article  Google Scholar 

  14. Zhijiang, G., Hui, L., Jing, Z., Jialin, G., Qingshan, W.: Analyses of dynamic characteristics of functionally graded porous (FGP) sandwich plates with viscoelastic materials-filled square-celled core. Eng. Struct. 248, 113242 (2021)

    Article  Google Scholar 

  15. Emad, K.N., Sadeq, H.B., Muhannad, A.-W.: Optimization design of vibration characterizations for functionally graded porous metal sandwich plate structure. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.03.235

    Article  Google Scholar 

  16. Emad, K.N., Sadeq, H.B., Muhannad, A.-W.: Analytical and numerical investigation of buckling load of functionally graded materials with porous metal of sandwich plate. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.03.557

    Article  Google Scholar 

  17. Vu, T.-V., Cao, H.-L., Truong, G.-T., Kim, C.-S.: Buckling analysis of the porous sandwich functionally graded plates resting on Pasternak foundations by Navier solution combined with a new refined quasi-3D hyperbolic shear deformation theory. Mech. Based Des Struct. Mach (2022). https://doi.org/10.1080/15397734.2022.2038618

    Article  Google Scholar 

  18. Narayan, S., Prasant Kumar, S., Dipak Kumar, M., Bhrigu, N.S.: Vibration and uncertainty analysis of functionally graded sandwich plate using layerwise theory. AIAA J. 60(6), 3402–3423 (2022)

    Article  Google Scholar 

  19. Yijie, L., Shengkai, S., Huaiwei, H., Yingjing, L.: Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane. Compos. B Eng. 168, 236–242 (2019)

    Article  Google Scholar 

  20. Pham, V.V., Le, Q.H.: Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory. Defence Technol 18, 490–508 (2022)

    Article  Google Scholar 

  21. Nguyen, T.G., Nguyen ,T.H.: Hygro-thermo-mechanical stability analysis of variable thickness functionally graded sandwich porous plates resting on variable elastic foundations using finite element method. J. Thermal Stresses 45(8), 641–668 (2022)

  22. Supen, K.S., Anup, G.: Effect of porosity on the thermal buckling analysis of power and sigmoid law functionally graded material sandwich plates based on sinusoidal shear deformation theory. Int. J. Struct. Stab. Dyn. 22(5), 2250063 (2022)

    Article  MathSciNet  Google Scholar 

  23. Supen, K.S., Anup, G.: Influence of porosity distribution on free vibration and buckling analysis of multi-directional functionally graded sandwich plates. Compos. Struct. 279, 114795 (2022)

    Article  Google Scholar 

  24. Swaminathan, K., Hirannaiah, S., Rajanna, T.: Vibration and stability characteristics of functionally graded sandwich plates with/without porosity subjected to localized edge loadings. Mech. Based Des. Struct. Mach., 1–39 (2022).

  25. Lazreg, H., Abdelouahed, T.: Static deflections and stress distribution of functionally graded sandwich plates with porosity. Smart Struct. Syst. 28(3), 343–354 (2021)

    Google Scholar 

  26. Slimane, M., Adda, H.M.: Influence of porosity on the analysis of sandwich plates FGM using of high order shear-deformation theory. Frattura ed Integrità Strutturale, 14(51), 199–214 (2020).

  27. Mohamed, S., Lazreg, H., Abdelouahed, T.: Effect of porosity on the free vibration analysis of various functionally graded sandwich plates. Adv. Mater. Res. 10(4), 293–311 (2021)

    Google Scholar 

  28. Ahmed, A.D., Ashraf, M.Z.: Effect of porosity on the bending analysis of various functionally graded sandwich plates. Mater. Res. Express. 6(6), 065703 (2019)

    Article  Google Scholar 

  29. Ahmed, A.D., Ashraf, M.Z.: Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory. Mater. Res. Express. 6(11):115707 (2019).

  30. Singh, S.J., Harsha, S.P.: Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov’s method: a semi-analytical approach. Thin-Walled Struct. 150, 106668 (2020)

    Article  Google Scholar 

  31. Singh, S.J., Harsha, S.P.: Thermal buckling of porous symmetric and non-symmetric sandwich plate with homogenous core and S-FGM face sheets resting on Pasternak foundation. Int. J. Mech. Mater. Des. 16(4), 707–731 (2020)

    Article  Google Scholar 

  32. Nuttawit, W., Variddhi, U.: Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp. Sci. Technol. 32(1), 111–120 (2014)

    Article  Google Scholar 

  33. Ashraf, M.Z.: A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities. Compos. Struct. 201, 38–48 (2018)

    Article  Google Scholar 

  34. Slimane, M., Abdelouahed, T., Mohammed, S.A.H., Ismail, M., Habib, H., Samir, B.: Two new refifined shear displacement models for functionally graded sandwich plates. Arch. Appl. Mech. 81, 1507–1522 (2011)

    Article  MATH  Google Scholar 

  35. Reissner, E.: On transverse bending of plates, including the effect of transverse shear deformation. Int. J. Solids Struct. 11(5), 569–573 (1974)

    Article  MATH  Google Scholar 

  36. Reddy, J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51(4), 745–752 (1984)

    Article  MATH  Google Scholar 

  37. Touratier, M.: An efficient standard plate theory. Int. J. Eng. Sci. 29(8), 901–916 (1991)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research is supported by Natural Science Foundation of China (11862007, 52265020), Science and Technology Projects of Jiangxi Education Department of China (GJJ211322).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicheng Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The displacement (δu1, δv1, δw1, δw2) can be given as:

$$\begin{gathered} A_{11} \frac{{\partial^{2} u_{1} }}{{\partial x^{2} }} + A_{12} \frac{{\partial^{2} v_{1} }}{\partial x\partial y} - A_{11}^{1} \frac{{\partial^{3} w_{1} }}{{\partial x^{3} }} - A_{12}^{1} \frac{{\partial^{3} w_{1} }}{{\partial x\partial y^{2} }} - B_{11}^{1} \frac{{\partial^{3} w_{2} }}{{\partial x^{3} }} - B_{11}^{1} \frac{{\partial^{3} w_{2} }}{{\partial x\partial y^{2} }} \hfill \\ + A_{66} \frac{{\partial^{2} u_{1} }}{{\partial y^{2} }} + A_{66} \frac{{\partial^{2} v_{1} }}{\partial x\partial y} - 2A_{66}^{1} \frac{{\partial^{3} w_{1} }}{{\partial x\partial y^{2} }} - 2B_{66}^{1} \frac{{\partial^{3} w_{2} }}{{\partial x\partial y^{2} }} = 0 \hfill \\ A_{12} \frac{{\partial^{2} u_{1} }}{\partial x\partial y} + A_{22} \frac{{\partial^{2} v_{1} }}{{\partial y^{2} }} - A_{12}^{1} \frac{{\partial^{3} w_{1} }}{{\partial y\partial x^{2} }} - A_{33}^{1} \frac{{\partial^{3} w_{1} }}{{\partial y^{3} }} - B_{12}^{1} \frac{{\partial^{3} w_{2} }}{{\partial y\partial x^{2} }} - B_{22}^{1} \frac{{\partial^{3} w_{2} }}{{\partial y^{3} }} \hfill \\ + A_{66} \frac{{\partial^{2} u_{1} }}{\partial x\partial y} + A_{66} \frac{{\partial^{2} v_{1} }}{{\partial x^{2} }} - 2A_{66}^{1} \frac{{\partial^{3} w_{1} }}{{\partial y\partial x^{2} }} - 2B_{66}^{1} \frac{{\partial^{3} w_{2} }}{{\partial y\partial x^{2} }} = 0 \hfill \\ A_{11}^{1} \frac{{\partial^{3} u_{1} }}{{\partial x^{3} }} + A_{12}^{1} \frac{{\partial^{3} v_{1} }}{{\partial y\partial x^{2} }} - B_{12} \frac{{\partial^{4} w_{1} }}{{\partial x^{4} }} - B_{22} \frac{{\partial^{4} w_{1} }}{{\partial x^{2} \partial y^{2} }} - C_{11}^{1} \frac{{\partial^{4} w_{2} }}{{\partial x^{4} }} - C_{11}^{1} \frac{{\partial^{4} w_{2} }}{{\partial x^{2} \partial y^{2} }} + A_{12}^{1} \frac{{\partial^{3} u_{1} }}{{\partial x\partial y^{2} }} + A_{22}^{1} \frac{{\partial^{3} v_{1} }}{{\partial y^{3} }} \hfill \\ - B_{12} \frac{{\partial^{4} w_{1} }}{{\partial x^{2} \partial y^{2} }} - B_{22} \frac{{\partial^{4} w_{1} }}{{\partial y^{4} }} - C_{11}^{1} \frac{{\partial^{4} w_{2} }}{{\partial x^{2} \partial y^{2} }} - C_{12}^{1} \frac{{\partial^{4} w_{2} }}{{\partial y^{4} }} + 2A_{66}^{1} \frac{{\partial^{3} u_{1} }}{{\partial x\partial y^{2} }} + 2A_{66}^{1} \frac{{\partial^{3} v_{1} }}{{\partial y\partial x^{2} }} \hfill \\ - 4B_{66} \frac{{\partial^{4} w_{1} }}{{\partial x^{2} \partial y^{2} }} - 4C_{66}^{1} \frac{{\partial^{4} w_{2} }}{{\partial x^{2} \partial y^{2} }} = - q \hfill \\ B_{11}^{1} \frac{{\partial^{3} u_{1} }}{{\partial x^{3} }} + B_{12}^{1} \frac{{\partial^{3} v_{1} }}{{\partial y\partial x^{2} }} - C_{11}^{1} \frac{{\partial^{4} w_{1} }}{{\partial x^{4} }} - C_{12}^{1} \frac{{\partial^{4} w_{1} }}{{\partial x^{2} \partial y^{2} }} - C_{11} \frac{{\partial^{4} w_{2} }}{{\partial x^{4} }} - C_{12} \frac{{\partial^{4} w_{2} }}{{\partial x^{2} \partial y^{2} }} + B_{12}^{1} \frac{{\partial^{3} u_{1} }}{{\partial x\partial y^{2} }} + B_{22}^{1} \frac{{\partial^{3} v_{1} }}{{\partial y^{3} }} \hfill \\ - C_{12}^{1} \frac{{\partial^{4} w_{1} }}{{\partial x^{2} \partial y^{2} }} - C_{22}^{1} \frac{{\partial^{4} w_{1} }}{{\partial y^{4} }} - C_{12} \frac{{\partial^{4} w_{2} }}{{\partial x^{2} \partial y^{2} }} - C_{22} \frac{{\partial^{4} w_{2} }}{{\partial y^{4} }} + 2B_{66}^{1} \frac{{\partial^{3} u_{1} }}{{\partial x\partial y^{2} }} + 2B_{66}^{1} \frac{{\partial^{3} v_{1} }}{{\partial y\partial x^{2} }} \hfill \\ - 4C_{66}^{1} \frac{{\partial^{4} w_{1} }}{{\partial x^{2} \partial y^{2} }} - 4C_{66} \frac{{\partial^{4} w_{2} }}{{\partial x^{2} \partial y^{2} }} + E_{44} \frac{{\partial^{3} w_{2} }}{{\partial y^{3} }} + E_{55} \frac{{\partial^{3} w_{2} }}{{\partial x^{3} }} = - q \hfill \\ \end{gathered}$$

Appendix 2

The coefficient matrix \(\Gamma\) is given by:

$$\begin{gathered} \Gamma_{11} = A_{11} mm^{2} + A_{66} nn^{2} \hfill \\ \Gamma_{12} = mm \times nn\left( {A_{12} + A_{66} } \right) \hfill \\ \Gamma_{13} = - mm\left[ {A_{11}^{1} mm^{2} + \left( {A_{12}^{1} + 2A_{66}^{1} } \right)nn^{2} } \right] \hfill \\ \Gamma_{14} = - mm\left[ {B_{11}^{1} mm^{2} + \left( {B_{12}^{1} + 2B_{66}^{1} } \right)nn^{2} } \right] \hfill \\ \Gamma_{22} = A_{66} mm^{2} + A_{66} nn^{2} \hfill \\ \Gamma_{23} = - nn\left[ {A_{22}^{1} nn^{2} + \left( {A_{12}^{1} + 2A_{66}^{1} } \right)mm^{2} } \right] \hfill \\ \Gamma_{24} = - nn\left[ {B_{22}^{1} nn^{2} + \left( {B_{12}^{1} + 2B_{66}^{1} } \right)mm^{2} } \right] \hfill \\ \Gamma_{33} = B_{11} mm^{4} + 2\left( {B_{12} + 2B_{66} } \right)mm^{2} nn^{2} + B_{22} nn^{4} \hfill \\ \Gamma_{34} = C_{11}^{1} mm^{4} + 2\left( {C_{12}^{1} + 2C_{66}^{1} } \right)mm^{2} nn^{2} + C_{22}^{1} nn^{4} \hfill \\ \Gamma_{44} = C_{11} mm^{4} + 2\left( {C_{12} + 2C_{66} } \right)mm^{2} nn^{2} + C_{22} nn^{4} + E_{44} nn^{4} + E_{55} mm^{4} \hfill \\ \end{gathered}$$

The generalized force vector \(\left[ F \right] = \left[ {\begin{array}{*{20}c} {F_{1} } & {F_{2} } & {F_{3} } & {F_{4} } \\ \end{array} } \right]^{T}\) can be written as:

$$\begin{array}{*{20}l} {F_{1} = 0} \hfill \\ {F_{2} = 0} \hfill \\ {F_{3} = q_{0} } \hfill \\ {F_{4} = q_{0} } \hfill \\ \end{array}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Han, M., Wang, X. et al. Bending analysis of two different types of functionally graded material porous sandwich plates. Arch Appl Mech 93, 3071–3091 (2023). https://doi.org/10.1007/s00419-023-02425-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02425-0

Keywords

Navigation