Skip to main content
Log in

Tryptophan-assisted hydrothermal synthesis and sodium hydroxide-induced phase transformation of zirconia nanocrystals with excellent adsorption performance

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

A serial of zirconia (ZrO2) nanocrystals was hydrothermally synthesized without or with the addition of a certain amount of sodium hydroxide (NaOH) solution using a new water-soluble zirconium precursor solution obtained by mixing zirconium oxychloride octahydrate with nonpolar amino acid tryptophan (Trp) in water. The morphology and crystal structure of the resulting ZrO2 nanocrystals were characterized by powder X-ray diffraction, transmission electron microscopy, field-emission scanning electron microscopy, and Fourier transform infrared spectroscopy. The results showed that when using Trp as the sole additive without any addition of NaOH solution, pure monoclinic-phase Trp-coated ZrO2 nanorods with the average diameter and length of about 5 and 27 nm were formed and further assembled anisotropically into 40–70 nm tetragonal star-like nanostructures. The addition of the increasing NaOH solution in the Trp-assisted hydrothermal reaction induced gradual transformation of both crystal structure and morphology of the resulting ZrO2 products, which finally evolved into sheet-like aggregates of pure tetragonal-phase 5–7 nm ZrO2 nanospheres simultaneously coated by both Trp and –OH groups/OH ions. These ZrO2 products synthesized in the presence of both Trp and NaOH solution compared with those synthesized with the addition of either only Trp or NaOH solution showed more excellent adsorption abilities towards cationic dye rhodamine B, with high adsorption efficiencies of up to 80% within 30 min, and can be potentially applied as absorbents for chemical wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All relevant data are within the paper.

References

  1. M. Ramani, S. Ponnusamy, C. Muthamizhchelvan, E. Marsili, Colloid. Surface B 117, 233–239 (2014)

    Article  CAS  Google Scholar 

  2. H.-E. Lee, H.-Y. Ahn, J. Mun, Y.Y. Lee, M. Kim, N.H. Cho, K. Chang, W.S. Kim, J. Rho, K.T. Nam, Nature 556, 360–365 (2018)

    Article  CAS  Google Scholar 

  3. C.F. Tan, Z.Y. Sun, Y. Ruan, Y.S. Cui, G.G. Zuo, P. Yu, H. Liu, J. Cluster Sci. 33, 485–493 (2022)

    Article  CAS  Google Scholar 

  4. S. Ding, F. Huang, X. Mou, J. Wu, X. Lü, J. Mater. Chem 21, 4888–4892 (2011)

    Article  CAS  Google Scholar 

  5. Y.M. Guo, F.F. Wang, J. Zhang, L. Yang, X.M. Shi, Q.L. Fang, X.M. Ma, Res. Chem. Intermed. 39, 2407–2415 (2013)

    Article  CAS  Google Scholar 

  6. A. Baral, F. Cavalieri, S. Chattopadhyay, M. Ashokkumar, A.C.S. Sustain, Chem. Eng. 9, 13953–13962 (2021)

    CAS  Google Scholar 

  7. N. Belachew, A. Tadesse, M.H. Kahsay, D.S. Meshesha, K. Basavaiah, Appl. Water Sci. 11, 1–9 (2021)

    Article  Google Scholar 

  8. P. Saharan, P. Bansal, G.R. Chaudhary, A.K. Sharma, J. Nanosci. Nanotech. 19, 7221–7228 (2019)

    Article  CAS  Google Scholar 

  9. A. Alagarsamy, S. Chandrasekaran, A. Manikandan, J. Mol. Struct. 1247, 131275 (2022)

    Article  CAS  Google Scholar 

  10. N. Mohammadizadeh, S.Z. Mohammadi, M. Kaykhaii, J. Anal. Chem. 73, 685–694 (2018)

    Article  CAS  Google Scholar 

  11. N.Y. Mohammed, M.M.S. Wahsh, I.T. Motawea, H.A. Essawy, J. Korean Ceram. Soc. 58, 359–372 (2021)

    Article  CAS  Google Scholar 

  12. T.V. Tran, D.T.C. Nguyen, P.S. Kumar, A.T.M. Din, A.A. Jalil, D.V.N. Vo, Environ. Chem. Lett. 20, 1309–1331 (2022)

    Article  CAS  Google Scholar 

  13. M. Khan, M.R. Shaik, S.T. Khan, F.A. Syed, M. Kuniyil, M. Khan, A.A. Al-Warthan, M.R.H. Siddiqui, M.N. Tahir, ACS Omega 5, 1987–1996 (2020)

    Article  CAS  Google Scholar 

  14. S.L. Jangra, K. Stalin, N. Dilbaghi, S. Kumar, J. Tawale, S.P. Singh, R. Pasricha, J. Nanosci. Nanotech. 12, 7105–7112 (2012)

    Article  CAS  Google Scholar 

  15. T.Y. Kang, J.Y. Seo, J.H. Ryu, K.M. Kim, J.S. Kwon, J. Biomed. Mater. Res. A 109, 1196–1208 (2021)

    Article  CAS  Google Scholar 

  16. A. Masudi, O. Muraza, Energy Fuels 32, 2840–2854 (2018)

    Article  CAS  Google Scholar 

  17. F. Heshmatpour, R.B. Aghakhanpour, Powder Technol. 205, 193–200 (2011)

    Article  CAS  Google Scholar 

  18. H. Qiu, Y. Zhang, W. Huang, J. Peng, J. Chen, L. Gao, M. Omran, N. Li, G. Chen, A.C.S. Sustain, Chem. Eng. 11, 1067–1077 (2023)

    CAS  Google Scholar 

  19. H. Shokry, M. Elkady, H. Hamad, J. Nano, Res. 56, 142–151 (2019)

    CAS  Google Scholar 

  20. H. Ehrlich, P. Simon, M. Motylenko, M. Wysokowski, V.V. Bazhenov, R. Galli, A.L. Stelling, D. Stawski, M. Ilan, H. Stocker, B. Abendroth, R. Born, T. Jesionowski, K.J. Kurzydlowskii, D.C. Meyer, J. Mater. Chem. B 1, 5092–5099 (2013)

    Article  CAS  Google Scholar 

  21. Z.X. Shu, X.L. Jiao, D.R. Chen, CrystEngComm 14, 1122–1127 (2012)

    Article  CAS  Google Scholar 

  22. Z.X. Shu, X.L. Jiao, D.R. Chen, CrystEngComm 15, 4288–4294 (2013)

    Article  CAS  Google Scholar 

  23. X.L. Liu, I. Pappas, M. Fitzgerald, Y.J. Zhu, M. Eibling, L. Pan, Mater. Lett. 64, 1591–1594 (2010)

    Article  CAS  Google Scholar 

  24. C.V. Reddy, B. Babu, I.N. Reddy, J. Shim, Ceram. Int. 44, 6940–6948 (2018)

    Article  CAS  Google Scholar 

  25. L. Ben Hammouda, A. Ghorbel, J. Sol–Gel Sci. Technol. 89, 543–552 (2019)

    Article  CAS  Google Scholar 

  26. K. De Keukeleere, J. De Roo, P. Lommens, J.C. Martins, P. Van der Voort, I. Van Driessche, Inorg. Chem. 54, 3469–3476 (2015)

    Article  Google Scholar 

  27. P.M. de Souza, R.C. Rabelo-Neto, L.E.P. Borges, G. Jacobs, B.H. Davis, U.M. Graham, D.E. Resasco, F.B. Noronha, Acs Catal. 5, 7385–7398 (2015)

    Article  Google Scholar 

  28. E. Ghasali, A. Kariminejad, D. Ghahremani, Y. Orooji, T. Ebadzadeh, JOM 74, 4335–4343 (2022)

    Article  CAS  Google Scholar 

  29. L. Naszályi Nagy, J. Mihály, A. Polyak, B. Debreczeni, B. Császár, I.C. Szigyártó, A. Wacha, Z. Czégény, E. Jakab, S. Klébert, E. Drotár, G. Dabasi, A. Bóta, L. Balogh, É. Kiss, J. Mater. Chem. B 3, 7529–7537 (2015)

    Article  Google Scholar 

  30. H.Q. Cao, H. Zheng, K.Y. Liu, R.P. Fu, Cryst. Growth Des. 10, 597–601 (2010)

    Article  CAS  Google Scholar 

  31. S. Mallakpour, L. Mani, Synth. React. Inorg. M. 46, 394–399 (2016)

    Article  CAS  Google Scholar 

  32. I. Pappas, M. Fitzgerald, X.Y. Huang, J. Li, L. Pan, Cryst. Growth Des. 9, 5213–5219 (2009)

    Article  CAS  Google Scholar 

  33. H. Zheng, K.Y. Liu, H.Q. Cao, X.R. Zhang, J. Phys. Chem. C 113, 18259–18263 (2009)

    Article  CAS  Google Scholar 

  34. S. Jalili, M. Keshavarz, J. Iran. Chem. Soc. 18, 2801–2806 (2021)

    Article  CAS  Google Scholar 

  35. J. De Roo, S. Coucke, H. Rijckaert, K. De Keukeleere, D. Sinnaeve, Z. Hens, J.C. Martins, I. Van Driessche, Langmuir 32, 1962–1970 (2016)

    Article  Google Scholar 

  36. C.R. Panda, V. Chakravortty, K.C. Dash, Transit. Met. Chem. 13, 287–290 (1988)

    Article  CAS  Google Scholar 

  37. D.T.C. Nguyen, H.T.N. Le, T.T. Nguyen, T.T.T. Nguyen, L.G. Bach, T.D. Nguyen, T.V. Tran, J. Hazard. Mater. 420, 126586 (2021)

    Article  CAS  Google Scholar 

  38. X. Cao, G. Fischer, J. Phys. Chem. A 103, 9995–10003 (1999)

    Article  CAS  Google Scholar 

  39. B. Hernandez, F. Pfluger, A. Adenier, S.G. Kruglik, M. Ghomi, J. Phys. Chem. B 114, 15319–15330 (2010)

    Article  CAS  Google Scholar 

  40. Z.M. Yaremko, R.S. Petryshyn, Colloid J. 75, 741–746 (2013)

    Article  CAS  Google Scholar 

  41. A. Kumar, P. Kumar, A.S. Dhaliwal, J. Korean Ceram. Soc. 59, 370–382 (2022)

    Article  CAS  Google Scholar 

  42. A.B. Nawale, N.S. Kanhe, S.V. Bhoraskar, V.L. Mathe, A.K. Das, Mater. Res. Bull. 47, 3432–3439 (2012)

    Article  CAS  Google Scholar 

  43. S.N. Basahel, T.T. Ali, M. Mokhtar, K. Narasimharao, Nanoscale Res. Lett. 10, 73 (2015)

    Article  Google Scholar 

  44. H. Matsui, N. Ohkura, S. Karuppuchamy, M. Yoshihara, Ceram. Int. 39, 5827–5831 (2013)

    Article  CAS  Google Scholar 

  45. Y. Li, B. Liu, J. Liu, T. Wang, Y. Shen, K. Zheng, F. Jiang, Y. Xu, X. Liu, New J. Chem. 45, 8978–8985 (2021)

    Article  CAS  Google Scholar 

  46. A. George, P.T. Seena, J. Therm. Anal. Calorim. 110, 1037–1041 (2012)

    Article  CAS  Google Scholar 

  47. H.S. Han, W. Park, S.W. Hwang, H. Kim, Y. Sim, S. Surendran, U. Sim, I.S. Cho, J. Catal. 389, 328–336 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Science and Technology Research Project of the Education Department of Jiangxi Province (No. 201708), the National Natural Science Foundation of China (No. 21561028), the Natural Science Foundation of Jiangxi province (No. 20161BAB203371), and the College Students Innovation and Entrepreneurship Training Program of Jiangxi Province (No. S202110416002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laijun Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Tong, J., Li, Y. et al. Tryptophan-assisted hydrothermal synthesis and sodium hydroxide-induced phase transformation of zirconia nanocrystals with excellent adsorption performance. J. Korean Ceram. Soc. 60, 679–686 (2023). https://doi.org/10.1007/s43207-023-00295-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00295-4

Keywords

Navigation