Skip to main content

Advertisement

Log in

Understanding redox cycling behavior of Ni–YSZ anodes at 500 °C in solid oxide fuel cells by electrochemical impedance analysis

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Solid oxide fuel cells (SOFCs) are promising energy conversion devices because of their high electrical efficiency, even for small power systems. However, when the anode is exposed to reduction and oxidation (redox) cycles, the Ni phase causes a large microstructural change as a result of its chemical expansion and contraction. This negatively affects the electrochemical performance. However, most studies have focused on the redox cycling behaviors of SOFCs at high operation temperatures (≥ 800 °C). Therefore, in this study, we investigate the degradation behavior of the SOFC anode during redox cycles at 500 °C. To identify the individual steps of the electrochemical processes of the anode, in-situ monitored impedance spectra were analyzed using the distribution of relaxation time method at various oxygen and hydrogen partial pressures. Consequently, the electrode polarization process was deconvoluted into five sub-processes. During the redox cycles, three major peaks were altered: gas phase diffusion in the anode substrate (10–1–101 Hz), gas diffusion coupled with charge transfer reaction and ionic transport (102–103 Hz) and charged species across the Ni–yttria stabilized zirconia interface at the anode (103–104 Hz). The major degradation of the electrode performance at 500 °C was attributed to the increase in gas phase diffusion resistance due to Ni phase aggregation and the decrease in porosity in the anode during the redox cycles. This was confirmed by microstructural analysis. By contrast, the other two processes (102–103 and 103–104 Hz) compensated each other, thus having negligible effect on performance degradation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells. Science 334(6058), 935–939 (2011)

    Article  CAS  Google Scholar 

  2. S.B. Bošković, B.Z. Matovic, M.D. Vlajić, V.D. Kristić, Modified glycine nitrate procedure (MGNP) for the synthesis of SOFC nanopowders. Ceram. Int. 33(1), 89–93 (2007)

    Article  Google Scholar 

  3. D. Stöver, H. Buchkremer, S. Uhlenbruck, Processing and properties of the ceramic conductive multilayer device solid oxide fuel cell (SOFC). Ceram. Int. 30(7), 1107–1113 (2004)

    Article  Google Scholar 

  4. S. Jo, B. Sharma, D.-H. Park, J.-H. Myung, Materials and nano-structural processes for use in solid oxide fuel cells: a review. J. Korean Ceram. Soc. 57(2), 135–151 (2020)

    Article  CAS  Google Scholar 

  5. K.J. Lee, J.H. Chung, M.J. Lee, H.J. Hwang, Chromium poisoning of neodymium nickelate (Nd2NiO4) cathodes for solid oxide fuel cells. J. Korean Ceram. Soc. 56(2), 160–166 (2019)

    Article  CAS  Google Scholar 

  6. Y.-S. Yoo, Y. Namgung, A. Bhardwaj, S.-J. Song, A facile combustion synthesis route for performance enhancement of La0.6Sr0.4Co0.2Fe0.8O3δ (LSCF6428) as a robust cathode material for IT-SOFC. J. Korean Ceram. Soc. 56(5), 497–505 (2019)

    Article  CAS  Google Scholar 

  7. F. Yi, H. Li, H. Chen, R. Zhao, X. Jiang, Preparation and characterization of La and Cr co-doped SrTiO3 materials for SOFC anode. Ceram. Int. 39(1), 347–352 (2013)

    Article  CAS  Google Scholar 

  8. D.W. Jung, K.T. Lee, E.D. Wachsman, Dysprosium and gadolinium double doped bismuth oxide electrolytes for low temperature solid oxide fuel cells. J. Electrochem. Soc. 163(5), F411 (2016)

    Article  CAS  Google Scholar 

  9. B.-H. Yun, K.J. Kim, D.W. Joh, M.S. Chae, J.J. Lee, D.-W. Kim, S. Kang, D. Choi, S.-T. Hong, K.T. Lee, Highly active and durable double-doped bismuth oxide-based oxygen electrodes for reversible solid oxide cells at reduced temperatures. J. Mater. Chem. A 7(36), 20558–20566 (2019)

    Article  CAS  Google Scholar 

  10. D.W. Jung, K.T. Lee, E.D. Wachsman, Terbium and tungsten co-doped bismuth oxide electrolytes for low temperature solid oxide fuel cells. J. Korean Ceram. Soc. 51(4), 260–264 (2014)

    Article  CAS  Google Scholar 

  11. H. Yokokawa, H. Tu, B. Iwanschitz, A. Mai, Fundamental mechanisms limiting solid oxide fuel cell durability. J. Power Sources 182(2), 400–412 (2008)

    Article  CAS  Google Scholar 

  12. D. Waldbillig, A. Wood, D.G. Ivey, Electrochemical and microstructural characterization of the redox tolerance of solid oxide fuel cell anodes. J. Power Sources 145(2), 206–215 (2005)

    Article  CAS  Google Scholar 

  13. H. Sumi, R. Kishida, J.-Y. Kim, H. Muroyama, T. Matsui, K. Eguchi, Correlation between microstructural and electrochemical characteristics during redox cycles for Ni–YSZ anode of SOFCs. J. Electrochem. Soc. 157(12), B1747–B1752 (2010)

    Article  CAS  Google Scholar 

  14. D. Simwonis, F. Tietz, D. Stöver, Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells. Solid State Ionics 132(3–4), 241–251 (2000)

    Article  CAS  Google Scholar 

  15. R. Vassen, D. Simwonis, D. Stöver, Modelling of the agglomeration of Ni-particles in anodes of solid oxide fuel cells. J. Mater. Sci. 36(1), 147–151 (2001)

    Article  CAS  Google Scholar 

  16. B. Song, E. Ruiz-Trejo, A. Bertei, N.P. Brandon, Quantification of the degradation of Ni–YSZ anodes upon redox cycling. J. Power Sources 374, 61–68 (2018)

    Article  CAS  Google Scholar 

  17. M. Pihlatie, A. Kaiser, M. Mogensen, Redox stability of SOFC: thermal analysis of Ni–YSZ composites. Solid State Ionics 180(17–19), 1100–1112 (2009)

    Article  CAS  Google Scholar 

  18. A. Faes, A. Hessler-Wyser, A. Zryd, A review of RedOx cycling of solid oxide fuel cells anode. Membranes 2(3), 585–664 (2012)

    Article  CAS  Google Scholar 

  19. H. Sumi, H. Shimada, Y. Yamaguchi, T. Yamaguchi, Y. Fujishiro, Degradation evaluation by distribution of relaxation times analysis for microtubular solid oxide fuel cells. Electrochim. Acta. 339, 135913 (2020)

    Article  CAS  Google Scholar 

  20. A. Leonide, V. Sonn, A. Weber, E. Ivers-Tiffée, Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells. J. Electrochem. Soc. 155(1), B36 (2007)

    Article  Google Scholar 

  21. A.L. Smirnova, K.R. Ellwood, G.M. Crosbie, Application of fourier-based transforms to impedance spectra of small-diameter tubular solid oxide fuel cells. J. Electrochem. Soc. 148(6), A610–A615 (2001)

    Article  CAS  Google Scholar 

  22. B. Liu, Y. Zhang, B. Tu, Y. Dong, M. Cheng, Electrochemical impedance investigation of the redox behaviour of a Ni–YSZ anode. J. Power Sources 165(1), 114–119 (2007)

    Article  CAS  Google Scholar 

  23. S.J. Kim, M.-B. Choi, M. Park, H. Kim, J.-W. Son, J.-H. Lee, B.-K. Kim, H.-W. Lee, S.-G. Kim, K.J. Yoon, Acceleration tests: degradation of anode-supported planar solid oxide fuel cells at elevated operating temperatures. J. Power Sources 360, 284–293 (2017)

    Article  CAS  Google Scholar 

  24. J. Hayd, E. Ivers-Tiffée, Detailed electrochemical study on nanoscaled La0.6Sr0.4CoO3δ SOFC Thin-film cathodes in dry, humid and CO2-containing atmospheres. J. Electrochem. Soc. 160(11), F1197 (2013)

    Article  CAS  Google Scholar 

  25. Y. Yan, Q. Fang, L. Blum, W. Lehnert, Performance and degradation of an SOEC stack with different cell components. Electrochim. Acta 258, 1254–1261 (2017)

    Article  CAS  Google Scholar 

  26. Y.-D. Kim, J.-I. Lee, M. Saqib, K.-Y. Park, J. Hong, K.J. Yoon, I. Lee, J.-Y. Park, Degradation of anode-supported solid oxide fuel cells under load trip and cycle conditions and their degradation prevention operating logic. J. Electrochem. Soc. 165(9), F728 (2018)

    Article  CAS  Google Scholar 

  27. Y. Zhang, H. Fan, M. Han, Stability of Ni–YSZ anode for SOFCs in methane fuel: the effects of infiltrating La0.8Sr0.2FeO3δ and Gd-doped CeO2 materials. J. Electrochem. Soc. 165(10), F756 (2018)

    Article  CAS  Google Scholar 

  28. H. Schichlein, A.C. Müller, M. Voigts, A. Krügel, E. Ivers-Tiffée, Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. J. Appl. Electrochem. 32(8), 875–882 (2002)

    Article  CAS  Google Scholar 

  29. H. Sumi, T. Yamaguchi, K. Hamamoto, T. Suzuki, Y. Fujishiro, Electrochemical analysis for anode-supported microtubular solid oxide fuel cells in partial reducing and oxidizing conditions. Solid State Ionics 262, 407–410 (2014)

    Article  CAS  Google Scholar 

  30. G. Brus, K. Miyoshi, H. Iwai, M. Saito, H. Yoshida, Change of an anode’s microstructure morphology during the fuel starvation of an anode-supported solid oxide fuel cell. Int. J. Hydrogen Energy 40(21), 6927–6934 (2015)

    Article  CAS  Google Scholar 

  31. T. Matsui, K. Eguchi, K. Shirai, T. Ozeki, T. Okanishi, H. Muroyama, K. Eguchi, Redox-induced self-modification of cermet anodes of Ni–CeO2-based oxide for solid oxide fuel cells. J. Electrochem. Soc. 164(13), F1368 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) grant funded by the Korea government (Ministry of Science and ICT) (2020M1A2A2080864). This work was also supported by “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry and Energy (MOTIE) (20194030202360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Taek Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.H., Im, HN. & Lee, K.T. Understanding redox cycling behavior of Ni–YSZ anodes at 500 °C in solid oxide fuel cells by electrochemical impedance analysis. J. Korean Ceram. Soc. 58, 606–613 (2021). https://doi.org/10.1007/s43207-021-00136-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00136-2

Keywords

Navigation