Skip to main content
Log in

Exploring the Role of Humidity, Temperature, and Mixed Ionic and Electronic Conductivity on SOFC Anode Electrocatalysis

  • Nanomaterials and Composites for Energy Conversion and Storage
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Infiltration of nanoscale electrocatalysts into Ni/yttria-stabilized zirconia (Ni-YSZ) cermets has been shown to improve the electrochemical performance of solid oxide fuel cell (SOFC) anodes. While infiltrated electrodes in SOFCs result in improved cell performance, long-term operation leads to coarsening of the infiltrated nanoparticles and negates the short-term performance improvements. This study explores the roles of humidity, temperature, and number of cycles of nanocatalyst infiltration in improving mixed conduction within the Ni-YSZ electrode. Two mixed conduction phases were studied: Gd0.1Ce0.9O2-δ (GDC) as an infiltrant into Ni-YSZ electrodes, and Ni/transition metal doped-YSZ electrodes infiltrated with Ni. Analysis of impedance data from these cells shows improved electrochemical performance in infiltrated cells with mixed conduction compared with infiltrated cells containing purely ionic and electronic conducting phases. Improved anode performance is attributed to the availability of electronic pathways through predominantly ionic-conducting phases to connect distant Ni nanoparticles and/or Ni grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.P. O’Hayre, S.-W. Cha, W.G. Colella, and F.B. Prinz, Fuel Cell Fundamentals, 1st edn. (Wiley, Hoboken, 2016).

    Book  Google Scholar 

  2. M. Boaro and A.S. Arico, eds., Advances in Medium and High Temperature Solid Oxide Fuel Cell Technology, (Cham: Springer, 2017). https://doi.org/10.1007/978-3-319-46146-5.

  3. A. Faes, A. Hessler-Wyser, D. Presvytes, C.G. Vayenas, and J. Van Herle, Fuel cells 9(6), 841. (2009).

    Article  Google Scholar 

  4. E.D. Wachsman, and K.T. Lee, Science 334, 935. https://doi.org/10.1126/science.1204090 (2011).

    Article  Google Scholar 

  5. A. Leonide, Y. Apel, and E. Ivers-Tiffee, ECS Trans 19(20), 81–109. (2009).

    Article  Google Scholar 

  6. A. Bertei, J.G. Pharoah, D.A.W. Gawel, and C. Nicolella, ECS Trans. 57, 2527. https://doi.org/10.1149/05701.2527ecst (2013).

    Article  Google Scholar 

  7. B. Hua, W. Zhang, M. Li, X. Wang, B. Chi, J. Pu, and J. Li, J. Power Sources. 247, 170. https://doi.org/10.1016/j.jpowsour.2013.08.060 (2014).

    Article  Google Scholar 

  8. S. Futamura, Y. Tachikawa, J. Matsuda, S.M. Lyth, and Y. Shiratori, J. Electrochem. Soc. 164, 3055. https://doi.org/10.1149/2.0071710jes (2017).

    Article  Google Scholar 

  9. B. Timurkutluk, C. Timurkutluk, M.D. Mat, and Y. Kaplan, Int. J. Energy Res. 35, 1048. https://doi.org/10.1002/er.1832 (2011).

    Article  Google Scholar 

  10. J.D. Nicholas, and S.A. Barnett, J. Electrochem. Soc. 157, B536. https://doi.org/10.1149/1.3284519 (2010).

    Article  Google Scholar 

  11. P. J. Gasper, Improving Electrochemical Performance of Nickel – Yttria Stabilized Zirconia Cermet Anodes Employing Nickel Nanoparticles. Doctoral Dissertation, Boston University, 2019.

  12. S.N. Basu, Y. Lu, P.J. Gasper, S. Gopalan, and U.B. Pal, ECS Trans. 78, 1397. https://doi.org/10.1149/07801.1397ecst (2017).

    Article  Google Scholar 

  13. Y. Lu, P. Gasper, U.B. Pal, S. Gopalan, and S.N. Basu, J. Power Sources. 396, 257. https://doi.org/10.1016/j.jpowsour.2018.06.027 (2018).

    Article  Google Scholar 

  14. S.A. Barnett, B.-K. Park, and R. Scipioni, ECS Trans. 91, 1791. https://doi.org/10.1149/09101.1791ecst (2019).

    Article  Google Scholar 

  15. L. Adijanto, R. Küngas, J. Park, J.M. Vohs, and R.J. Gorte, Int. J. Hydrog. Energy. 36, 15722. https://doi.org/10.1016/j.ijhydene.2011.09.059 (2011).

    Article  Google Scholar 

  16. S. McIntosh, J.M. Vohs, and R.J. Gorte, J. Electrochem. Soc. 150, A470. https://doi.org/10.1149/1.1559064 (2003).

    Article  Google Scholar 

  17. O. Costa-Nunes, R.J. Gorte, and J.M. Vohs, J. Power Sources 141, 241. https://doi.org/10.1016/j.jpowsour.2004.09.022 (2005).

    Article  Google Scholar 

  18. T. Takeuchi, E. Bétourné, D.C. Sinclair, M. Tabuchi, A.R. West, and H. Kageyama, Solid State Ionics 120(1), 33–41. https://doi.org/10.1016/S0167-2738(99)00004-1 (1999).

    Article  Google Scholar 

  19. Y. Lu, Improving Intermediate Temperature Performance of Ni-YSZ Cermet Anodes for Solid Oxide Fuel Cells by Infiltration of Nickel Nanoparticles, Doctoral Dissertation, Boston University (2019).

  20. B. Mo, J. Rix, U.B. Pal, S.N. Basu, and S. Gopalan, J. Electrochem. Soc. 167(5), 54515. https://doi.org/10.1149/1945-7111/ab74bf (2020).

    Article  Google Scholar 

  21. M.I. Osendi, and J.S. Moya, J. Mater. Sci. Lett. 7, 15. https://doi.org/10.1007/BF01729901 (1988).

    Article  Google Scholar 

  22. B.Y. Park, R. Scipioni, D. Cox, and S.A. Barnett, J. Mat. Chem. A 8, 4099. https://doi.org/10.1039/C9TA12316D (2020).

    Article  Google Scholar 

  23. Y.A. Chart, M.Y. Lu, and S. A. Barnett, ECS Meeting Abstracts MA2019-01 1713 (2019). https://doi.org/10.1149/MA2019-01/33/1713

  24. M.Y. Lu, R. Scipioni, B.K. Park, T. Yang, Y.A. Chart, and S.A. Barnett, Materials Today Energy 14, 100362. https://doi.org/10.1016/j.mtener.2019.100362 (2019).

    Article  Google Scholar 

  25. B. Mo, J. Rix, U.B. Pal, S.N. Basu, and S. Gopalan, J. Electrochem. Soc. 167(13), 134506. https://doi.org/10.1149/1945-7111/abb70f (2020).

    Article  Google Scholar 

  26. V. Sonn, A. Leonide, and E. Ivers-Tiffée, J. Electrochem. Soc. 155, 675. https://doi.org/10.1149/1.2908860 (2008).

    Article  Google Scholar 

  27. Y. Choi, S. Cha, H. Ha, S. Lee, H. Seo, J. Lee, H. Kim, S. Kim, and W. Jung, Nat. Nanotechnol. 14, 245. https://doi.org/10.1038/s41565-019-0367-4 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The research was funded in part by the Department of Energy, National Energy Technology Laboratory under award number DE-FE0026096. The authors acknowledge the use of the SEM facilities in the Photonics Center of Boston University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikanth Gopalan.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 368 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, B., Rix, J.G., Pal, U. et al. Exploring the Role of Humidity, Temperature, and Mixed Ionic and Electronic Conductivity on SOFC Anode Electrocatalysis. JOM 73, 2771–2780 (2021). https://doi.org/10.1007/s11837-021-04777-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04777-w

Navigation