Skip to main content
Log in

Does Microfluidic Sperm Sorting Affect Embryo Euploidy Rates in Couples with High Sperm DNA Fragmentation?

  • Reproductive Endocrinology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Male infertility contributes as the main factor in 30–50% of infertility cases. Conventional methods for sperm preparation have induced questioning of sperm recovery rates. The microfluidic sperm sorting (MSS) technique selects highly motile sperm with lower levels of SDF (sperm DNA fragmentation) compared to conventional sperm sorting techniques. This study aimed to determine whether utilizing this technique will reveal better embryo quality and euploidy rates in couples with repeated implantation failure (RIF) and high SDF in a new PGT-A (preimplantation genetic testing for aneuploidies) cycle. This retrospective study included couples referred to PGT-A for previous repeated ART (assisted reproductive techniques) cycle failures and with high SDF. In their new cycles, couples who accepted the technique were assigned to the MSS group, and the rest were managed with DGC (density-gradient centrifugation). Two groups were compared in terms of fertilization and euploidy rates, clinical miscarriage and live birth rates, the total number of blastocysts, and top quality blastocysts. There was no difference between the groups regarding fertilization rates, euploidy rates, clinical miscarriage, and live birth rates. The total number of blastocysts and top quality blastocysts were significantly higher in the MSS group. The MSS technique provides a higher number of top-quality blastocysts than DGC; however, neither euploidy nor live birth rates improved. Studies focusing on confounding factors to embryonic genomic status in the presence of high SDF are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data that support the study’s findings are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

References

  1. Knowlton MS, Sadasivam M, Tasoglu S. Microfluidics for sperm research. Trends Biotechnol. 2015;33(4):221–9.

    Article  CAS  PubMed  Google Scholar 

  2. Rappa KL, Rodriguez HF, Hakkarainen GC, Anchon RM, Mutter GL, Asghar W. Sperm processing for advanced reproductive technologoneties: where are we today? Biotechnol Adv. 2016;34:578–87.

    Article  PubMed  Google Scholar 

  3. Schultz RM, Williams CJ. The science of ART. Science. 2002;296:2188–90.

    Article  CAS  PubMed  Google Scholar 

  4. Aitken RJ, De Iuliis GN, Finnie JM, et al. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum Reprod. 2010;25:2415–26.

    Article  CAS  PubMed  Google Scholar 

  5. Englert Y, Vandenbergh M, Rodesch C, Bertrand E, Biramane J, Legreve A. Comparative auto-controlled study between swim-up and percoll preparation of fresh semen samples for in vitro fertilization. Hum Reprod. 1992;7:399–402.

    Article  CAS  PubMed  Google Scholar 

  6. Coughlan C, Clarke H, Cutting R, Saxton J, Waite S, Ledger W, Li T, Pacey AA. Sperm DNA fragmentation, recurrent implantation failure and recurrent miscarriage. Asian J Androl. 2015;17:681–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fernandez-Gonzalez R, Moreira PN, Perez-Crespo M, Sanchez-Martin M, Ramirez MA, Pericuesta E, Bilbao A, Bermejo-Alverez P, Hourcade JD, Fonseca FR, Gutierez-Adan A. Long term effects of mouse intracytoplasmic sperm injection with DNA fragmented sperm on health and behaviour of adult offspring. Biol Reprod. 2008;78:761–72.

    Article  CAS  PubMed  Google Scholar 

  8. Simon L, Emery BR, Carrell DT. Review: impact of sperm DNA damage in assisted reproduction. Best Pract Res Clin Obstet Gynaecol. 2017;44:38–56.

    Article  PubMed  Google Scholar 

  9. Kishi K, Ogata H, Ogata S, Mizusawa Y, Okamoto E, Matsumoto Y, Kokeguchi S, Shiotani M. Frequency of sperm DNA fragmentation according to selection method: comparison and relevance of a microfluidic device and a swim-up procedure. J Clin Diagn. 2015;9(11):14–6.

    Google Scholar 

  10. Schuster TG, Cho B, Keller LM, Takayama S, Smith GD. Isolation of motile spermatozoa from semen samples using microfluidics. Reprod Biomed Online. 2003;7(1):75–81.

    Article  PubMed  Google Scholar 

  11. Swain JE, Lai D, Takayama S, Smith GD. Thinking big by thinking small: application of microfluidic technology to improve ART samples using microfluidics. Lab Chip. 2013;13:1213.

    Article  CAS  PubMed  Google Scholar 

  12. Tsai VFS, Chaang HC, Hsieh JT, Wo AM. Review article Application of microfluidic technologies to the quantification and manipulation of sperm. Urol Sci. 2016;27:56–9.

    Article  Google Scholar 

  13. Anbari F, Khalili MA, Sultan Ahamed AM, Mangoli E, Nabi A, Dehghanpour F, Sabour M. Microfluidic sperm selection yields higher sperm quality compared to conventional method in ICSI program: a pilot study. Syst Biol Reprod Med. 2021;67(2):137–43. https://doi.org/10.1080/19396368.2020.1837994.

    Article  CAS  PubMed  Google Scholar 

  14. Yalcinkaya Kalyan E, Can Celik S, Okan O, Akdeniz G, Karabulut S, Caliskan E. Does a microfluidic chip for sperm sorting have a positive add-on effect on laboratory and clinical outcomes of intracytoplasmic sperm injection cycles? A sibling oocyte study. Andrologia. 2019;51(10):e13403. https://doi.org/10.1111/and.13403.

    Article  PubMed  Google Scholar 

  15. Gonzalez-Castro RA, Carnevale EM. Use of microfluidics to sort stallion sperm for intracytoplasmic sperm injection. Anim Reprod Sci. 2019;202:1–9. https://doi.org/10.1016/j.anireprosci.2018.12.012.

    Article  PubMed  Google Scholar 

  16. Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16:231–45.

    Article  PubMed  Google Scholar 

  17. Pabuccu EG, Caglar GS, Pabuccu R. Estrogen or antiestrogen for Bologna poor responders? Gynecol Endocrinol. 2015;11:1–4.

    Google Scholar 

  18. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011; 26(6):1270–83.

  19. Cobo A, Bellver J, Domingo J, Perez S, Crespo J, Pellicer A, et al. New options in assisted reproduction technology: the Cryotop method of oocyte vitrification. Reprod Biomed Online. 2008;17:68–72.

    Article  PubMed  Google Scholar 

  20. Groenewoud ER, Cohlen BJ, Al-Oraiby A, Brinkhuis EA, Broekmans FJM, de Bruin JP, van den Dool G, et al. A randomized controlled, non-inferiority trial of modified natural versus artificial cycle for cryo-thawed embryo transfer. Hum Reprod. 2016;31(7):1483–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Avendano C, Franchi A, Duran H, Oehninger S. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril. 2010;94(2):549–57.

    Article  PubMed  Google Scholar 

  22. Kim SM, Kim SK, Jee BC, Kim SH. Effect of sperm DNA fragmentation on embryo quality in normal responder women in in vitro fertilization and intracytoplasmic sperm injection. Yonsei Med J. 2019;60(5):461–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod. 2004;19(3):611–5.

    Article  CAS  PubMed  Google Scholar 

  24. Setti AS, Braga DPAF, Provenza RR, Iaconelli A Jr, Borges E Jr. Oocyte ability to repair sperm DNA fragmentation: the impact of maternal age on intracytoplasmic sperm injection outcomes. Fertil Steril. 2021;116(1):123–9. https://doi.org/10.1016/j.fertnstert.2020.10.045.

    Article  CAS  PubMed  Google Scholar 

  25. Osman A, Alsomait H, Seshadri S, El-Toukhy T, Khalaf Y. The effect of sperm DNA fragmentation on live birth rate after IVF or ICSI: a systematic review and meta-analysis. Reprod Biomed Online. 2015;30:120–7.

    Article  CAS  PubMed  Google Scholar 

  26. Benchaib M, Lornage J, Mazoyer C, Lejeune H, Salle B, François GJ. Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil Steril. 2007;87:93–100.

    Article  CAS  PubMed  Google Scholar 

  27. Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril. 2004;82:378–83.

    Article  PubMed  Google Scholar 

  28. Morris ID, Ilott S, Dixon L, Brison DR. The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (Comet assay) and its relationship to fertilization and embryo development. Hum Reprod. 2002;17:990–8.

    Article  CAS  PubMed  Google Scholar 

  29. Wdowiak A, Bakalczuk S, Bakalczuk G. The effect of sperm DNA fragmentation on the dynamics of the embryonic development in intracytoplasmatic sperm injection. Reprod Biol. 2015;15:94–100.

    Article  PubMed  Google Scholar 

  30. Alvarez Sedo C, Bilinski M, Lorenzi D, Uriondo H, Noblia F, Longobucco V, Ventimiglia Lagar E, Nodar F. Effect of sperm DNA fragmentation on embryo development: clinical and biological aspects. JBRA Assist Reprod. 2017;21(4):343–50.

    PubMed  Google Scholar 

  31. Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril. 2004;81:1289–95.

    Article  PubMed  Google Scholar 

  32. Raziel A, Friedler S, Schachter M, Kaufman S, Omanski A, Soffer Y, Ron-El R. Influence of a short or long abstinence period on semen parameters in the ejaculate of patients with nonobstructive azoospermia. Fertil Steril. 2001;76:485–90.

    Article  CAS  PubMed  Google Scholar 

  33. Agarwal A, Gupta S, Du Plessis S, Sharma R, Esteves SC, Cirenza C, Eliwa J, Al-Najjar W, Kumaresen D, Haroun N, Philby S, Sabanegh E. Abstinence time and its impact on basic and advanced semen parameters. Urology. 2016;94:102–10.

    Article  PubMed  Google Scholar 

  34. Greco E, Scarselli F, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Franco G, Anniballo N, Mendoza C, Tesarik J. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod. 2005;20:226–30.

    Article  PubMed  Google Scholar 

  35. Esteves SC, Sanchez-Martın F, Sanchez-Martın P, Schneider DT, Gosalvez J. Comparison of reproductive outcome in oligozoospermic men with high sperm DNA fragmentation undergoing intracytoplasmic sperm injection with ejaculated and testicular sperm. Fertil Steril. 2015;104:1398–405.

    Article  PubMed  Google Scholar 

  36. Pabuccu EG, Caglar GS, Tangal S, Haliloglu AH, Pabuccu R. Testicular versus ejaculated spermatozoa in ICSI cycles of normozoospermic men with high sperm DNA fragmentation and previous ART failures. Andrologia. 2017;49(2):12609.

    Article  CAS  Google Scholar 

  37. Parmegiani L, Cognigni GE, Bernardi S, Troilo E, Taraborrelli S, Arnone A, Maccarini AM, Filicori M. Comparison of two ready-to-use systems designed for sperm-hyaluronic acid binding selection before intracytoplasmic sperm injection: PICSI vs. Sperm Slow: a prospective, randomized trial. Fertil Steril. 2012;98:632–7.

    Article  PubMed  Google Scholar 

  38. Antinori M, Licata E, Dani G, Cerusico F, Versaci C, d’Angelo D, Antinori S. Intracytoplasmic morphologically selected sperm injection: a prospective randomized trial. Reprod Biomed Online. 2008;16:835–41.

    Article  PubMed  Google Scholar 

  39. Sharma RK, Kattoor AJ, Ghulmiyyah J, Agarwal A. Effect of sperm storage and selection techniques on sperm parameters. Syst Biol Reprod Med. 2015;61:1–12.

    Article  CAS  PubMed  Google Scholar 

  40. American Society of Reproductive Medicine. Diagnostic evaluation of the infertile male: a committee opinion. Fertil Steril. 2015;103(3):18–25.

    Article  Google Scholar 

  41. Esteves SC, Santi D, Simoni M. An update on clinical and surgical interventions to reduce sperm DNA fragmentation in infertile men. Andrology. 2020;8:53–81.

    Article  PubMed  Google Scholar 

  42. Lepine S, McDowell S, Searle LM, Kroon B, Glujovsky D, Yazdani A. Advanced sperm selection techniques for assisted reproduction. Cochrane Database of Systematic Reviews 2019, Issue 7. Art. No.: CD010461. https://doi.org/10.1002/14651858.CD010461.pub3.

  43. Oguz Y, Guler I, Erdem A, Mutlu MF, Gumuslu S, Oktem M, et al. The effect of swim-up and gradient sperm preparation techniques on deoxyribonucleic acid (DNA) fragmentation in subfertile patients. J Assist Reprod Genet. 2018;35:1083–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Muratori M, Tarozzi N, Carpentiero F, Danti S, Perrone FM, Cambi M, et al. Sperm selection with density gradient centrifugation and swim up: effect on DNA fragmentation in viable spermatozoa. Sci Rep. 2019;9:7492. https://doi.org/10.1038/s41598-019-43981-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Younglai EV, Holt D, Brown P, Jurisicova A, Casper RF. Sperm swim-up techniques and DNA fragmentation. Hum Reprod. 2001;16(9):1950.

    Article  CAS  PubMed  Google Scholar 

  46. Chenlo PH, Curi SM, Pugliese MN, Ariagno JI, Sardi-Segovia M, Furlan MJ. Fragmentation of sperm DNA using the TUNEL method. Actas Urol Esp. 2014;38(9):608–12. https://doi.org/10.1016/j.acuro.2014.02.022.

    Article  CAS  PubMed  Google Scholar 

  47. Asghar W, Velasco V, Kingsley JL, Shoukat MS, Shafiee H, Anchan RM, Mutter GL, Tüzel E, Demirci U. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Adv Healthc Mater. 2014;3(10):1671–9. https://doi.org/10.1002/adhm.201400058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Quinn MM, Jalalian L, Ribeiro S, Ona K, Demirci U, Cedars MI, Rosen MP. Microfluidic sorting selects sperm for clinical use with reduced DNA damage compared to density gradient centrifugation with swim-up in split semen samples. Hum Reprod. 2018;33(8):1388–93.

    Article  CAS  PubMed  Google Scholar 

  49. Gode F, Gürbüz AS, Tamer B, Pala I, Işık Z. The effects of microfluidic sperm sorting, density gradient and swim-up methods on semen oxidation reduction potential. Urol J. 2020;17(4):397–401.

    PubMed  Google Scholar 

  50. Shirota K, Yotsumoto F, Itoh H, Obama H, Hidaka N, Nakajima K, Miyamoto S. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertil Steril. 2016;105(2):315–21.

    Article  CAS  PubMed  Google Scholar 

  51. Godiwala PN, Kwieraga JL, Makhijani RB, Nulsen J, Benadiva CA, Engmann L. Embriyologic outcomes in intracytoplasmic sperm injection (ICSI) cycles utilizing sperm selected via a microfluidics device compared to standard selection.2020;114(3):146. https://doi.org/10.1016/j.fertnstert.2020.08.426

  52. Das M, Holzer HEG. Recurrent implantation failure: gamete and embryo factors. Fertil Steril. 2012;97(5):1021–7.

    Article  PubMed  Google Scholar 

  53. Tarozzi N, Nadalini M, Lagalla G, Zaca C, Borini A. Male factor infertility impacts the rate of mosaic blastocysts in cycles of preimplantation genetic testing for aneuploidy. J Assist Reprod Genet. 2019;36:2047–55.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Busnelli A, Somigliana E, Cirillo F, Baggiani A, Levi-Setti PE. Efficacy of therapies and interventions for repeated embryo implantation failure: a systematic review and meta-analysis. Sci Rep. 2021;11:1747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bronet F, Martinez E, Gaytan M, Linan A, Cernuda D, Ariza M, Nogales M, Pacheco A, San Celestino M, Garcia-Velasco JA. Sperm DNA fragmentation index does not correlate with the sperm or embryo aneuploidy rate in recurrent miscarriage or implantation failure patients. Hum Reprod. 2012;27(7):1922–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by E.G. Pabuçcu, M. Keskin, and T. Arslanca. The first draft of the manuscript was written by M. Keskin and E.G. Pabuçcu, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Müge Keskin.

Ethics declarations

Ethics Approval

This is an observational retrospective study. The Ufuk University Research Ethics Committee has confirmed that no ethical approval is required.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keskin, M., Pabuçcu, E.G., Arslanca, T. et al. Does Microfluidic Sperm Sorting Affect Embryo Euploidy Rates in Couples with High Sperm DNA Fragmentation?. Reprod. Sci. 29, 1801–1808 (2022). https://doi.org/10.1007/s43032-021-00784-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00784-z

Keywords

Navigation