Skip to main content
Log in

Control of LINE-1 Expression Maintains Genome Integrity in Germline and Early Embryo Development

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Maintenance of genome integrity in the germline and in preimplantation embryos is crucial for mammalian development. Epigenetic remodeling during primordial germ cell (PGC) and preimplantation embryo development may contribute to genomic instability in these cells, since DNA methylation is an important mechanism to silence retrotransposons. Long interspersed elements 1 (LINE-1 or L1) are the most common autonomous retrotransposons in mammals, corresponding to approximately 17% of the human genome. Retrotransposition events are more frequent in germ cells and in early stages of embryo development compared with somatic cells. It has been shown that L1 activation and expression occurs in germline and is essential for preimplantation development. In this review, we focus on the role of L1 retrotransposon in mouse and human germline and early embryo development and discuss the possible relationship between L1 expression and genomic instability during these stages. Although several studies have addressed L1 expression at different stages of development, the developmental consequences of this expression remain poorly understood. Future research is still needed to highlight the relationship between L1 retrotransposition events and genomic instability during germline and early embryo development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ivics Z, Izsvák Z. Repetitive elements and genome instability. Semin Cancer Biol. 2010;20:197–9. https://doi.org/10.1016/j.semcancer.2010.08.002.

    Article  PubMed  Google Scholar 

  2. Belan E. LINEs of evidence: noncanonical DNA replication as an epigenetic determinant. Biol Direct. 2013;8:1. https://doi.org/10.1186/1745-6150-8-22.

    Article  CAS  Google Scholar 

  3. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. https://doi.org/10.1038/35057062.

    Article  CAS  PubMed  Google Scholar 

  4. Pace JK, Feschotte C. The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res. 2007;17:422–32. https://doi.org/10.1101/gr.5826307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gerdes P, Richardson SR, Mager DL, Faulkner GJ. Transposable elements in the mammalian embryo: pioneers surviving through stealth and service. Genome Biol. 2016;17:1–17. https://doi.org/10.1186/s13059-016-0965-5.

    Article  CAS  Google Scholar 

  6. Huang CRL, Burns KH, Boeke JD. Active transposition in genomes. Annu Rev Genet. 2012;46:651–75. https://doi.org/10.1146/annurev-genet-110711-155616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH. High frequency retrotransposition in cultured mammalian cells. Cell. 1996;87:917–27. https://doi.org/10.1016/S0092-8674(00)81998-4.

    Article  CAS  PubMed  Google Scholar 

  8. Doucet AJ, Wilusz JE, Miyoshi T, Liu Y, Moran JV. A 3’ poly(A) tract is required for LINE-1 retrotransposition. Mol Cell. 2015;60:728–41. https://doi.org/10.1016/j.molcel.2015.10.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bodak M, Yu J, Ciaudo C. Regulation of LINE-1 in mammals. Biomol Concepts. 2014;5:409–28. https://doi.org/10.1515/bmc-2014-0018.

    Article  CAS  PubMed  Google Scholar 

  10. Burns KH. Our conflict with transposable elements and its implications for human disease. Annu Rev Pathol Mech Dis. 2020;15:51–70. https://doi.org/10.1146/annurev-pathmechdis-012419-032633.

    Article  CAS  Google Scholar 

  11. Naufer MN, Furano AV, Williams MC. Protein-nucleic acid interactions of LINE-1 ORF1p. Semin Cell Dev Biol. 2019;86:140–9. https://doi.org/10.1016/j.semcdb.2018.03.019.

    Article  CAS  PubMed  Google Scholar 

  12. Hancks DC, Kazazian HH. Roles for retrotransposon insertions in human disease. Mob DNA. 2016;7. https://doi.org/10.1186/s13100-016-0065-9.

  13. Gasior SL, Wakeman TP, Xu B, Deininger PL. The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol. 2006;357:1383–93. https://doi.org/10.1016/j.jmb.2006.01.089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Belancio VP, Deininger PL, Roy-Engel AM. LINE dancing in the human genome: transposable elements and disease. Genome Med. 2009;1:97. https://doi.org/10.1186/gm97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Konkel MK, Batzer MA. A mobile threat to genome stability: the impact of non-LTR retrotransposons upon the human genome. Semin Cancer Biol. 2010;20:211–21. https://doi.org/10.1016/j.semcancer.2010.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Newkirk SJ, An W. L1 regulation in mouse and human germ cells. Hum Retrotransposons Heal Dis. 2017. https://doi.org/10.1007/978-3-319-48344-3_2.

  17. Ran C, Huang L, Schneider AM, Lu Y, Niranjan T, Robinson MA, et al. Mobile interspersed repeats are major structural variants in the human genome. Cell. 2010;141:1171–82. https://doi.org/10.1016/j.cell.2010.05.026.Huang.

    Article  Google Scholar 

  18. Ewing AD, Kazazian HH. High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res. 2010;20:1262–70. https://doi.org/10.1101/gr.106419.110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, et al. LINE-1 retrotransposition activity in human genomes. Cell. 2010;141:1159–70. https://doi.org/10.1016/j.cell.2010.05.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS, Neuwald AF, et al. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell. 2010;141:1253–61. https://doi.org/10.1016/j.cell.2010.05.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Morant JV, et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A. 2003;100:5280–5. https://doi.org/10.1073/pnas.0831042100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ostertag EM, Kazazian J. Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. Genome Res. 2001;11:2059–65. https://doi.org/10.1101/gr.205701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ostertag EM, DeBerardinis RJ, Goodier JL, Zhang Y, Yang N, Gerton GL, et al. A mouse model of human L1 retrotransposition. Nat Genet. 2002;32:655–60. https://doi.org/10.1038/ng1022.

    Article  CAS  PubMed  Google Scholar 

  24. Kano H, Godoy I, Courtney C, Vetter MR, Gerton GL, Ostertag EM, et al. L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev. 2009;23:1303–12. https://doi.org/10.1101/gad.1803909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Garcia-Perez JL, Marchetto MCN, Muotri AR, Coufal NG, Gage FH, O’Shea KS, et al. LINE-1 retrotransposition in human embryonic stem cells. Hum Mol Genet. 2007;16:1569–77. https://doi.org/10.1093/hmg/ddm105.

    Article  CAS  PubMed  Google Scholar 

  26. Macia A, Munoz-Lopez M, Cortes JL, Hastings RK, Morell S, Lucena-Aguilar G, et al. Epigenetic control of retrotransposon expression in human embryonic stem cells. Mol Cell Biol. 2011;31:300–16. https://doi.org/10.1128/mcb.00561-10.

    Article  CAS  PubMed  Google Scholar 

  27. Wissing S, Mũoz-lopez M, Macia A, Yang Z, Montano M, Collins W, et al. Reprogramming somatic cells into ips cells activates line-1 retroelement mobility. Hum Mol Genet. 2012;21:208–18. https://doi.org/10.1093/hmg/ddr455.

    Article  CAS  PubMed  Google Scholar 

  28. Klawitter S, Fuchs NV, Upton KR, Muñoz-Lopez M, Shukla R, Wang J, et al. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. Nat Commun. 2016;7:10286. https://doi.org/10.1038/ncomms10286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Muotri AR, Chu VT, Marchetto MCN, Deng W, Moran JV, Gage FH. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature. 2005;435:903–10. https://doi.org/10.1038/nature03663.

    Article  CAS  PubMed  Google Scholar 

  30. Jönsson ME, Ludvik Brattås P, Gustafsson C, Petri R, Yudovich D, Pircs K, et al. Activation of neuronal genes via LINE-1 elements upon global DNA demethylation in human neural progenitors. Nat Commun. 2019;10:1–11. https://doi.org/10.1038/s41467-019-11150-8.

    Article  CAS  Google Scholar 

  31. Schaefer CB, Ooi SKT, Bestor TH, Bourc’his D. Epigenetic decisions in mammalian germ cells. Science (80- ). 2007; 316:398–9. https://doi.org/10.1126/science.1137544.

  32. Chuma S. LINE-1 of evidence for fetal oocyte attrition by retrotransposon. Dev Cell. 2014;29:501–2. https://doi.org/10.1016/j.devcel.2014.05.017.

    Article  CAS  PubMed  Google Scholar 

  33. Romanish MT, Cohen CJ, Mager DL. Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer. Semin Cancer Biol. 2010;20:246–53. https://doi.org/10.1016/j.semcancer.2010.05.005.

    Article  CAS  PubMed  Google Scholar 

  34. Curcio MJ, Kenny AE, Moore S, Garfinkel DJ, Weintraub M, Gamache ER, et al. S-Phase checkpoint pathways stimulate the mobility of the retrovirus-like transposon Ty1. Mol Cell Biol. 2007;27:8874–85. https://doi.org/10.1128/mcb.01095-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. DiGiacomo M, Comazzetto S, Saini H, DeFazio S, Carrieri C, Morgan M, et al. Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during adult spermatogenesis. Mol Cell. 2013;50:601–8. https://doi.org/10.1016/j.molcel.2013.04.026.

    Article  CAS  Google Scholar 

  36. Farkash EA, Kao GD, Horman SR, Prak ETL. Gamma radiation increases endonuclease-dependent L1 retrotransposition in a cultured cell assay. Nucleic Acids Res. 2006;34:1196–204. https://doi.org/10.1093/nar/gkj522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Newkirk SJ, Lee S, Grandi FC, Gaysinskaya V, Rosser JM, Vanden BN, et al. Intact piRNA pathway prevents L1 mobilization in male meiosis. Proc Natl Acad Sci U S A. 2017;114:E5635–44. https://doi.org/10.1073/pnas.1701069114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stribinskis V, Ramos KS. Activation of human long interspersed nuclear element 1 retrotransposition by benzo(a)pyrene, an ubiquitous environmental carcinogen. Cancer Res. 2006;66:2616–20. https://doi.org/10.1158/0008-5472.CAN-05-3478.

    Article  CAS  PubMed  Google Scholar 

  39. Yang F, Wang PJ. Multiple LINEs of retrotransposon silencing mechanisms in the mammalian germline. Semin Cell Dev Biol. 2016;59:118–25. https://doi.org/10.1016/j.semcdb.2016.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Castañeda J, Genzor P, Bortvin A. PiRNAs, transposon silencing, and germline genome integrity. Mutat Res - Fundam Mol Mech Mutagen. 2011;714:95–104. https://doi.org/10.1016/j.mrfmmm.2011.05.002.

    Article  CAS  Google Scholar 

  41. Carmell MA, Girard A, van de Kant HJG, Bourc’his D, Bestor TH, de Rooij DG, et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell. 2007;12:503–14. https://doi.org/10.1016/j.devcel.2007.03.001.

    Article  CAS  PubMed  Google Scholar 

  42. Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M, et al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 2008;22:908–17. https://doi.org/10.1101/gad.1640708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roovers EF, Rosenkranz D, Mahdipour M, Han CT, He N, de Sousa Lopes SMC, et al. Piwi proteins and piRNAs in mammalian oocytes and early embryos. Cell Rep. 2015;10:2069–82. https://doi.org/10.1016/j.celrep.2015.02.062.

    Article  CAS  PubMed  Google Scholar 

  44. Deng W, Lin H. Miwi, a murine homolog of Piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell. 2002;2:819–30. https://doi.org/10.1016/S1534-5807(02)00165-X.

    Article  CAS  PubMed  Google Scholar 

  45. Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature. 2006;442:199–202. https://doi.org/10.1038/nature04917.

    Article  PubMed  Google Scholar 

  46. Manakov SA, Pezic D, Marinov GK, Pastor WA, Sachidanandam R, Aravin AA. MIWI2 and MILI have differential effects on piRNA biogenesis and DNA methylation. Cell Rep. 2015;12:1234–43. https://doi.org/10.1016/j.celrep.2015.07.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reuter M, Berninger P, Chuma S, Shah H, Hosokawa M, Funaya C, et al. Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature. 2011;480:264–7. https://doi.org/10.1038/nature10672.

    Article  CAS  PubMed  Google Scholar 

  48. Aravin AA, Sachidanandam R, Bourc’his D, Schaefer C, Pezic D, Toth KF, et al. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell. 2008;31:785–99. https://doi.org/10.1016/j.molcel.2008.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De Fazio S, Bartonicek N, Di Giacomo M, Abreu-Goodger C, Sankar A, Funaya C, et al. The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature. 2011;480:259–63. https://doi.org/10.1038/nature10547.

    Article  CAS  PubMed  Google Scholar 

  50. Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science (80- ). 2007; 316:744–7. https://doi.org/10.1126/science.1142612.

  51. Pezic D, Manakov SA, Sachidanandam R, Aravin AA. piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells. Genes Dev. 2014;28:1410–28. https://doi.org/10.1101/gad.240895.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kitsou C, Lazaros L, Bellou S, Vartholomatos G, Sakaloglou P, Hatzi E, et al. Exogenous retroelement integration in sperm and embryos affects preimplantation development. Reproduction. 2016;152:185–93. https://doi.org/10.1530/REP-15-0174.

    Article  CAS  PubMed  Google Scholar 

  53. Lazaros L, Kitsou C, Kostoulas C, Bellou S, Hatzi E, Ladias P, et al. Retrotransposon expression and incorporation of cloned human and mouse retroelements in human spermatozoa. Fertil Steril. 2017;107:821–30. https://doi.org/10.1016/j.fertnstert.2016.12.027.

    Article  CAS  PubMed  Google Scholar 

  54. Lim AK, Lorthongpanich C, Chew TG, Tan CWG, Shue YT, Balu S, et al. The nuage mediates retrotransposon silencing in mouse primordial ovarian follicles. Dev. 2013;140:3819–25. https://doi.org/10.1242/dev.099184.

    Article  CAS  Google Scholar 

  55. Malki S, vander Heijden GW, O’Donnell KA, Martin SL, Bortvin A. A Role for retrotransposon LINE-1 in fetal oocyte attrition in mice. Dev Cell. 2014. https://doi.org/10.1016/j.devcel.2014.04.027.

  56. Soper SFC, van der Heijden GW, Hardiman TC, Goodheart M, Martin SL, de Boer P, et al. Mouse maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meiosis. Dev Cell. 2008;15:285–97. https://doi.org/10.1016/j.devcel.2008.05.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tharp ME, Malki S, Bortvin A. Maximizing the ovarian reserve in mice by evading LINE-1 genotoxicity. Nat Commun. 2020;11:1–13. https://doi.org/10.1038/s41467-019-14055-8.

    Article  CAS  Google Scholar 

  58. Goodier JL. Restricting retrotransposons: a review. Mob DNA. 2016;7:16. https://doi.org/10.1186/s13100-016-0070-z.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Su YQ, Sun F, Handel MA, Schimentic JC, Eppig JJ. Meiosis arrest female 1 (MARF1) has nuage-like function in mammalian oocytes. Proc Natl Acad Sci U S A. 2012;109:18653–60. https://doi.org/10.1073/pnas.1216904109.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Su YQ, Sugiura K, Sun F, Pendola JK, Cox GA, Handel MA, et al. MARF1 regulates essential oogenic processes in mice. Science (80- ). 2012. https://doi.org/10.1126/science.1214680.

  61. Flemr M, Malik R, Franke V, Nejepinska J, Sedlacek R, Vlahovicek K, et al. XA retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell. 2013;155:807–16. https://doi.org/10.1016/j.cell.2013.10.001.

    Article  CAS  PubMed  Google Scholar 

  62. Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature. 2008;453:534–8. https://doi.org/10.1038/nature06904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature. 2008;453:539–43. https://doi.org/10.1038/nature06908.

    Article  CAS  PubMed  Google Scholar 

  64. Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, et al. Critical roles for Dicer in the female germline. Genes Dev. 2007;21:682–93. https://doi.org/10.1101/gad.1521307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stein P, Rozhkov NV, Li F, Cárdenas FL, Davydenk O, Vandivier LE, et al. Essential role for endogenous siRNAs during meiosis in mouse oocytes. PLoS Genet. 2015;11:1–19. https://doi.org/10.1371/journal.pgen.1005013.

    Article  CAS  Google Scholar 

  66. García-López J, Hourcade J d D, Alonso L, Cárdenas DB, Del Mazo J. Global characterization and target identification of piRNAs and endo-siRNAs in mouse gametes and zygotes. Biochim Biophys Acta - Gene Regul Mech. 1839;2014:463–75. https://doi.org/10.1016/j.bbagrm.2014.04.006.

    Article  CAS  Google Scholar 

  67. Taborska E, Pasulka J, Malik R, Horvat F, Jenickova I, Matošević ZJ, et al. Restricted and non-essential redundancy of RNAi and piRNA pathways in mouse oocytes. PLoS Genet. 2019;15:1–22. https://doi.org/10.1371/journal.pgen.1008261.

    Article  CAS  Google Scholar 

  68. Beraldi R, Pittoggi C, Sciamanna I, Mattei E, Spadafora C. Expression of LINE-1 retroposons is essential for murine preimplantation development. Mol Reprod Dev. 2006;73:279–87. https://doi.org/10.1002/mrd.20423.

    Article  CAS  PubMed  Google Scholar 

  69. Percharde M, Lin CJ, Yin Y, Guan J, Peixoto GA, Bulut-Karslioglu A, et al. A LINE1-nucleolin partnership regulates early development and ESC identity. Cell. 2018;174:391–405.e19. https://doi.org/10.1016/j.cell.2018.05.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sciamanna I, Vitullo P, Curatolo A, Spadafora C. Retrotransposons, reverse transcriptase and the genesis of new genetic information. Gene. 2009;448:180–6. https://doi.org/10.1016/j.gene.2009.07.011.

    Article  CAS  PubMed  Google Scholar 

  71. Percharde M, Sultana T, Ramalho-Santos M. What doesn’t kill you makes you stronger: transposons as dual players in chromatin regulation and genomic variation. BioEssays. 2020;42:1–10. https://doi.org/10.1002/bies.201900232.

    Article  Google Scholar 

  72. Georgiou I, Noutsopoulos D, Dimitriadou E, Markopoulos G, Apergi A, Lazaros L, et al. Retrotransposon RNA expression and evidence for retrotransposition events in human oocytes. Hum Mol Genet. 2009;18:1221–8. https://doi.org/10.1093/hmg/ddp022.

    Article  CAS  PubMed  Google Scholar 

  73. Ergün S, Buschmann C, Heukeshoven J, Dammann K, Schnieders F, Lauke H, et al. Cell type-specific expression of LINE-1 open reading frames 1 and 2 in fetal and adult human tissues. J Biol Chem. 2004;279:27753–63. https://doi.org/10.1074/jbc.M312985200.

    Article  CAS  PubMed  Google Scholar 

  74. Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, et al. A survey of small RNAs in human sperm. Hum Reprod. 2011;26:3401–12. https://doi.org/10.1093/humrep/der329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miller D. Analysis and significance of messenger RNA in human ejaculated spermatozoa. Mol Reprod Dev. 2000;56:259–64. https://doi.org/10.1002/(sici)1098-2795(200006)56:2+<259::aid-mrd10>3.0.co;2-r.

    Article  CAS  PubMed  Google Scholar 

  76. Brouha B, Meischl C, Ostertag E, De Boer M, Zhang Y, Neijens H, et al. Evidence consistent with human L1 retrotransposition in maternal meiosis I. Am J Hum Genet. 2002;71:327–36. https://doi.org/10.1086/341722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. van den Hurk JAJM, Meij IC, del Carmen SM, Kano H, Nikopoulos K, Hoefsloot LH, et al. L1 retrotransposition can occur early in human embryonic development. Hum Mol Genet. 2007;16:1587–92. https://doi.org/10.1093/hmg/ddm108.

    Article  CAS  PubMed  Google Scholar 

  78. Kazazian HH, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature. 1988;332:164–6. https://doi.org/10.1038/332164a0.

    Article  CAS  PubMed  Google Scholar 

  79. Wimmer K, Callens T, Wernstedt A, Messiaen L. The NF1 gene contains hotspots for L1 endonuclease-dependent de novo insertion. PLoS Genet. 2011;7:e1002371. https://doi.org/10.1371/journal.pgen.1002371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Senthong A, Kitkumthorn N, Rattanatanyong P, Khemapech N, Triratanachart S, Mutirangura A. Differences in LINE-1 methylation between endometriotic ovarian cyst and endometriosis-associated ovarian cancer. Int J Gynecol Cancer. 2014;24:36–42. https://doi.org/10.1097/IGC.0000000000000021.

    Article  PubMed  Google Scholar 

  81. Lertkhachonsuk R, Paiwattananupant K, Tantbirojn P, Rattanatanyong P, Mutirangura A. LINE-1 methylation patterns as a predictor of postmolar gestational trophoblastic neoplasia. Biomed Res Int. 2015;2015:1–7. https://doi.org/10.1155/2015/421747.

    Article  CAS  Google Scholar 

  82. Chalertpet K, Pakdeechaidan W, Patel V, Mutirangura A, Yanatatsaneejit P. Human papillomavirus type 16 E7 oncoprotein mediates CCNA1 promoter methylation. Cancer Sci. 2015;106:1333–40. https://doi.org/10.1111/cas.12761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pattamadilok J, Huapai N, Rattanatanyong P, Vasurattana A, Triratanachat S, Tresukosol D, et al. LINE-1 hypomethylation level as a potential prognostic factor for epithelial ovarian cancer. Int J Gynecol Cancer. 2008;18:711–7. https://doi.org/10.1111/j.1525-1438.2007.01117.x.

    Article  CAS  PubMed  Google Scholar 

  84. Gkountela S, Zhang KX, Shafiq TA, Liao WW, Hargan-Calvopiña J, Chen PY, et al. DNA demethylation dynamics in the human prenatal germline. Cell. 2015;161:1425–36. https://doi.org/10.1016/j.cell.2015.05.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Guo F, Yan L, Guo H, Li L, Hu B, Zhao Y, et al. The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell. 2015;161:1437–52. https://doi.org/10.1016/j.cell.2015.05.015.

    Article  CAS  PubMed  Google Scholar 

  86. Tang WWC, Dietmann S, Irie N, Leitch HG, Floros VI, Bradshaw CR, et al. A unique gene regulatory network resets the human germline epigenome for development. Cell. 2015;161:1453–67. https://doi.org/10.1016/j.cell.2015.04.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tang WWC, Kobayashi T, Irie N, Dietmann S, Surani MA. Specification and epigenetic programming of the human germ line. Nat Rev Genet. 2016;17:585–600. https://doi.org/10.1038/nrg.2016.88.

    Article  CAS  PubMed  Google Scholar 

  88. Ha H, Song J, Wang S, Kapusta A, Feschotte C, Chen KC, et al. A comprehensive analysis of piRNAs from adult human testis and their relationship with genes and mobile elements. BMC Genomics. 2014;15:1–16. https://doi.org/10.1186/1471-2164-15-545.

    Article  CAS  Google Scholar 

  89. Williams Z, Morozov P, Mihailovic A, Lin C, Puvvula PK, Juranek S, et al. Discovery and characterization of piRNAs in the human fetal ovary. Cell Rep. 2015;13:854–63. https://doi.org/10.1016/j.celrep.2015.09.030.

    Article  CAS  PubMed  Google Scholar 

  90. Gainetdinov I, Skvortsova Y, Kondratieva S, Funikov S, Azhikina T. Two modes of targeting transposable elements by piRNA pathway in human testis. Rna. 2017;23:1614–25. https://doi.org/10.1261/rna.060939.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fernandes MG, He N, Wang F, Van Iperen L, Eguizabal C, Matorras R, et al. Human-specific subcellular compartmentalization of P-element induced wimpy testis-like (PIWIL) granules during germ cell development and spermatogenesis. Hum Reprod. 2018;33:258–69. https://doi.org/10.1093/humrep/dex365.

    Article  CAS  Google Scholar 

  92. Reznik B, Cincotta SA, Jaszczak RG, Mateo LJ, Shen J, Cao M, et al. Heterogeneity of transposon expression and activation of the repressive network in human fetal germ cells. Dev. 2019;146:dev171157. https://doi.org/10.1242/dev.171157.

    Article  CAS  Google Scholar 

  93. Hadziselimovic F, Hadziselimovic NO, Demougin P, Krey G, Oakeley E. Piwi-pathway alteration induces LINE-1 transposon derepression and infertility development in cryptorchidism. Sex Dev. 2015;9:98–104. https://doi.org/10.1159/000375351.

    Article  CAS  PubMed  Google Scholar 

  94. Yang Q, Li R, Lyu Q, Hou L, Liu Z, Sun Q, et al. Single-cell CAS-seq reveals a class of short PIWI-interacting RNAs in human oocytes. Nat Commun. 2019;10:1–15. https://doi.org/10.1038/s41467-019-11312-8.

    Article  CAS  Google Scholar 

  95. Ketting RF. The many faces of RNAi. Dev Cell. 2011;20:148–61. https://doi.org/10.1016/j.devcel.2011.01.012.

    Article  CAS  PubMed  Google Scholar 

  96. Ambartsumyan G, Clark AT. Aneuploidy and early human embryo development. Hum Mol Genet. 2008;17:10–5. https://doi.org/10.1093/hmg/ddn170.

    Article  CAS  Google Scholar 

  97. Dekel-Naftali M, Aviram-Goldring A, Litmanovitch T, Shamash J, Yonath H, Hourvitz A, et al. Chromosomal integrity of human preimplantation embryos at different days post fertilization. J Assist Reprod Genet. 2013;30:633–48. https://doi.org/10.1007/s10815-013-9988-y.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mertzanidou A, Wilton L, Cheng J, Spits C, Vanneste E, Moreau Y, et al. Microarray analysis reveals abnormal chromosomal complements in over 70% of 14 normally developing human embryos. Hum Reprod. 2013;28:256–64. https://doi.org/10.1093/humrep/des362.

    Article  CAS  PubMed  Google Scholar 

  99. Pellestor F, Gatinois V, Puechberty J, Geneviève D, Lefort G. Chromothripsis: potential origin in gametogenesis and preimplantation cell divisions. A review Fertil Steril. 2014;102:1785–96. https://doi.org/10.1016/j.fertnstert.2014.09.006.

    Article  PubMed  Google Scholar 

  100. Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C, et al. Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009;15:577–83. https://doi.org/10.1038/nm.1924.

    Article  CAS  PubMed  Google Scholar 

  101. Vanneste E, Van Der Aa N, Voet T, Vermeesch JR. Aneuploidy and copy number variation in early human development. Semin Reprod Med. 2012;30:302–8. https://doi.org/10.1055/s-0032-1313909.

    Article  PubMed  Google Scholar 

  102. Vanneste E, Voet T, Melotte C, Debrock S, Sermon K, Staessen C, et al. What next for preimplantation genetic screening? High mitotic chromosome instability rate provides the biological basis for the low success rate. Hum Reprod. 2009;24:2679–82. https://doi.org/10.1093/humrep/dep266.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Franasiak JM, Scott RT. Embryonic aneuploidy: overcoming molecular genetics challenges improves outcomes and changes practice patterns. Trends Mol Med. 2014;20:499–508. https://doi.org/10.1016/j.molmed.2014.06.006.

    Article  PubMed  Google Scholar 

  104. Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, Treff NR, et al. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2014;101:656–663.e1. https://doi.org/10.1016/j.fertnstert.2013.11.004.

    Article  PubMed  Google Scholar 

  105. Forman EJ, Hong KH, Treff NR, Scott RT. Comprehensive chromosome screening and embryo selection: moving toward single euploid blastocyst transfer. Semin Reprod Med. 2012;30:236–42. https://doi.org/10.1055/s-0032-1311526.

    Article  PubMed  Google Scholar 

  106. Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, Treff NR, et al. Aneuploidy across individual chromosomes at the embryonic level in trophectoderm biopsies: changes with patient age and chromosome structure. J Assist Reprod Genet. 2014;31:1501–9. https://doi.org/10.1007/s10815-014-0333-x.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, et al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet. 2011;43:811–4. https://doi.org/10.1038/ng.864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dean W. DNA methylation and demethylation: a pathway to gametogenesis and development. Mol Reprod Dev. 2014;81:113–25. https://doi.org/10.1002/mrd.22280.

    Article  CAS  PubMed  Google Scholar 

  109. Morgan HD, Santos F, Green K, Dean W, Reik W. Epigenetic reprogramming in mammals. Hum Mol Genet. 2005;14:R47–58. https://doi.org/10.1093/hmg/ddi114.

    Article  CAS  PubMed  Google Scholar 

  110. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science (80- ). 2001. https://doi.org/10.1126/science.1063443.

  111. Santos F, Dean W. Epigenetic reprogramming during early development in mammals. Reproduction. 2004;127:643–51. https://doi.org/10.1530/rep.1.00221.

    Article  CAS  PubMed  Google Scholar 

  112. Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol. 2002;241:172–82. https://doi.org/10.1006/dbio.2001.0501.

    Article  CAS  PubMed  Google Scholar 

  113. Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell. 2012;48:849–62. https://doi.org/10.1016/j.molcel.2012.11.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kelsey G. Keeping methylation at bay. Nat Genet. 2015;47:427–8. https://doi.org/10.1038/ng.3290.

    Article  CAS  PubMed  Google Scholar 

  115. Kelsey G, Feil R. New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos Trans R Soc B Biol Sci. 2013;368:20110336. https://doi.org/10.1098/rstb.2011.0336.

    Article  CAS  Google Scholar 

  116. Cantone I, Fisher AG. Epigenetic programming and reprogramming during development. Nat Struct Mol Biol. 2013;20:282–9. https://doi.org/10.1038/nsmb.2489.

    Article  CAS  PubMed  Google Scholar 

  117. Reik W. Cellular memory erased in human embryos protein-export pathway illuminated. Nature. 2014;511:4–5.

    Article  Google Scholar 

  118. Vitullo P, Sciamanna I, Baiocchi M, Sinibaldi-Vallebona P, Spadafora C. LINE-1 retrotransposon copies are amplified during murine early embryo development. Mol Reprod Dev. 2012;79:118–27. https://doi.org/10.1002/mrd.22003.

    Article  CAS  PubMed  Google Scholar 

  119. Swergold GD. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol Cell Biol. 1990;10:6718–29. https://doi.org/10.1128/mcb.10.12.6718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sciamanna I, Vitullo P, Curatolo A, Spadafora C. A reverse transcriptase-dependent mechanism is essential for murine preimplantation development. Genes (Basel). 2011;2:360–73. https://doi.org/10.3390/genes2020360.

    Article  CAS  Google Scholar 

  121. Peaston AE, Evsikov AV, Graber JH, de Vries WN, Holbrook AE, Solter D, et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell. 2004;7:597–606. https://doi.org/10.1016/j.devcel.2004.09.004.

    Article  CAS  PubMed  Google Scholar 

  122. Marchetto MCN, Narvaiza I, Denli AM, Benner C, Lazzarini TA, Nathanson JL, et al. Differential L1 regulation in pluripotent stem cells of humans and apes. Nature. 2013;503:525–9. https://doi.org/10.1038/nature12686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wissing S, Montano M, Garcia-Perez JL, Moran JV, Greene WC. Endogenous APOBEC3B restricts LINE-1 retrotransposition in transformed cells and human embryonic stem cells. J Biol Chem. 2011;286:36427–37. https://doi.org/10.1074/jbc.M111.251058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jacobs FMJ, Greenberg D, Nguyen N, Haeussler M, Ewing AD, Katzman S, et al. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature. 2014;516:242–5. https://doi.org/10.1038/nature13760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fadloun A, Le Gras S, Jost B, Ziegler-Birling C, Takahashi H, Gorab E, et al. Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA. Nat Struct Mol Biol. 2013;20:332–8. https://doi.org/10.1038/nsmb.2495.

    Article  CAS  PubMed  Google Scholar 

  126. Liang XW, Cui XS, Sun SC, Jin YX, Heo YT, Namgoong S, et al. Superovulation induces defective methylation in line-1 retrotransposon elements in blastocyst. Reprod Biol Endocrinol. 2013;11:1. https://doi.org/10.1186/1477-7827-11-69.

    Article  CAS  Google Scholar 

  127. Jachowicz JW, Bing X, Pontabry J, Bošković A, Rando OJ, Torres-Padilla ME. LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat Genet. 2017;49:1502–10. https://doi.org/10.1038/ng.3945.

    Article  CAS  PubMed  Google Scholar 

  128. Richardson SR, Gerdes P, Gerhardt DJ, Sanchez-Luque FJ, Bodea GO, Muñoz-Lopez M, et al. Heritable L1 retrotransposition in the mouse primordial germline and early embryo. Genome Res. 2017;27:1395–405. https://doi.org/10.1101/gr.219022.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A, et al. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature. 2012;484:339–44. https://doi.org/10.1038/nature10960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Richardson SR, Faulkner GJ. Heritable L1 retrotransposition events during development: understanding their origins: examination of heritable, endogenous L1 retrotransposition in mice opens up exciting new questions and research directions. BioEssays. 2018;40:1–14. https://doi.org/10.1002/bies.201700189.

    Article  Google Scholar 

  131. Carmignac V, Barberet J, Iranzo J, Quéré R, Guilleman M, Bourc’his D, et al. Effects of assisted reproductive technologies on transposon regulation in the mouse pre-implanted embryo. Hum Reprod. 2019;34:612–22. https://doi.org/10.1093/humrep/dez020.

    Article  CAS  PubMed  Google Scholar 

  132. Chamani IJ, Wang F, Luo D, Navarro PA, Cortes VL, Keefe DL. Inhibition of line-1 transposition blocks telomere elongation and downregulates totipotency genes during mouse embryo development. Fertil Steril. 2019;112:e126. https://doi.org/10.1016/j.fertnstert.2019.07.448.

    Article  Google Scholar 

  133. Bošković A, Eid A, Pontabry J, Ishiuchi T, Spiegelhalter C, Raghu Ram EVS, et al. Higher chromatin mobility supports totipotency and precedes pluripotency in vivo. Genes Dev. 2014;28:1042–7. https://doi.org/10.1101/gad.238881.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, et al. The DNA methylation landscape of human early embryos. Nature. 2014;511:606–10. https://doi.org/10.1038/nature13544.

    Article  CAS  PubMed  Google Scholar 

  135. Li L, Guo F, Gao Y, Ren Y, Yuan P, Yan L, et al. Single-cell multi-omics sequencing of human early embryos. Nat Cell Biol. 2018;20:847–58. https://doi.org/10.1038/s41556-018-0123-2.

    Article  CAS  PubMed  Google Scholar 

  136. Jachowicz JW, Torres-Padilla ME. LINEs in mice: features, families, and potential roles in early development. Chromosoma. 2016;125:29–39. https://doi.org/10.1007/s00412-015-0520-2.

    Article  CAS  PubMed  Google Scholar 

  137. Heras SR, Macias S, Cáceres JF, Garcia-Perez JL. Control of mammalian retrotransposons by cellular RNA processing activities. Mob Genet Elements. 2014;4:e28439. https://doi.org/10.4161/mge.28439.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Song MS, Rossi JJ. Molecular mechanisms of Dicer: endonuclease and enzymatic activity. Biochem J. 2017;474:1603–18. https://doi.org/10.1042/BCJ20160759.

    Article  CAS  PubMed  Google Scholar 

  139. Bodak M, Cirera-Salinas D, Yu J, Ngondo RP, Ciaudo C. Dicer, a new regulator of pluripotency exit and LINE-1 elements in mouse embryonic stem cells. FEBS Open Bio. 2017;7:204–20. https://doi.org/10.1002/2211-5463.12174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Quinlan AR, Boland MJ, Leibowitz ML, Shumilina S, Pehrson SM, Baldwin KK, et al. Genome sequencing of mouse induced pluripotent stem cells reveals retroelement stability and infrequent DNA rearrangement during reprogramming. Cell Stem Cell. 2011;9:366–73. https://doi.org/10.1016/j.stem.2011.07.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cheng L, Hansen NF, Zhao L, Du Y, Zou C, Donovan FX, et al. Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression. Cell Stem Cell. 2012;10:337–44. https://doi.org/10.1016/j.stem.2012.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Arokium H, Kamata M, Kim S, Kim N, Liang M, Presson AP, et al. Deep sequencing reveals low incidence of endogenous LINE-1 retrotransposition in human induced pluripotent stem cells. PLoS One. 2014;9:e108682. https://doi.org/10.1371/journal.pone.0108682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yan L, Yang M, Guo H, Yang L, Wu J, Li R, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013;20:1131–9. https://doi.org/10.1038/nsmb.2660.

    Article  CAS  PubMed  Google Scholar 

  144. Yandlm C, Karakülah G. Expression dynamics of repetitive DNA in early human embryonic development. BMC Genomics. 2019;20:1–16. https://doi.org/10.1186/s12864-019-5803-1.

    Article  CAS  Google Scholar 

  145. Lou C, Goodier JL, Qiang R. A potential new mechanism for pregnancy loss: considering the role of LINE-1 retrotransposons in early spontaneous miscarriage. Reprod Biol Endocrinol. 2020;18:1–10. https://doi.org/10.1186/s12958-020-0564-x.

    Article  Google Scholar 

  146. Wang L, Wang F, Guan J, Le J, Wu L, Zou J, et al. Relation between hypomethylation of long interspersed nucleotide elements and risk of neural tube defects. Am J Clin Nutr. 2010;91:1359–67. https://doi.org/10.3945/ajcn.2009.28858.

    Article  CAS  PubMed  Google Scholar 

  147. Wang L, Chang S, Guan J, Shangguan S, Lu X, Wang Z, et al. Tissue-specific methylation of long interspersed nucleotide element-1 of homo sapiens (L1Hs) during human embryogenesis and roles in neural tube defects. Curr Mol Med. 2015;15:497–507. https://doi.org/10.2174/1566524015666150630130229.

    Article  CAS  PubMed  Google Scholar 

  148. Faulkner GJ. Retrotransposons: mobile and mutagenic from conception to death. FEBS Lett. 2011;585:1589–94. https://doi.org/10.1016/j.febslet.2011.03.061.

    Article  CAS  PubMed  Google Scholar 

  149. Bodea GO, McKelvey EGZ, Faulkner GJ. Retrotransposon-induced mosaicism in the neural genome. R Soc Open Sci. 2018;8:180074. https://doi.org/10.1098/rsob.180074.

    Article  CAS  Google Scholar 

  150. Misiak B, Ricceri L, Sasiadek MM. Transposable elements and their epigenetic regulation in mental disorders: current evidence in the field. Front Genet. 2019;10:1–13. https://doi.org/10.3389/fgene.2019.00580.

    Article  CAS  Google Scholar 

  151. Suarez NA, Macia A, Muotri AR. LINE-1 retrotransposons in healthy and diseased human brain. Dev Neurobiol. 2018;78:434–55. https://doi.org/10.1002/dneu.22567.

    Article  PubMed  Google Scholar 

  152. Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F, et al. Somatic retrotransposition alters the genetic landscape of the human brain. Nature. 2011;479:534–7. https://doi.org/10.1038/nature10531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Scott EC, Devine SE. The role of somatic L1 retrotransposition in human cancers. Viruses. 2017;9:1–19. https://doi.org/10.3390/v9060131.

    Article  CAS  Google Scholar 

  154. Khalid M, Bojang P, Hassanin AAI, Bowers EC, Reyes-Reyes EM, Ramos IN, et al. Line-1: implications in the etiology of cancer, clinical applications, and pharmacologic targets. Mutat Res - Rev Mutat Res. 2018;778:51–60. https://doi.org/10.1016/j.mrrev.2018.09.003.

    Article  CAS  PubMed  Google Scholar 

  155. Dewannieux M, Esnault C, Heidmann T. LINE-mediated retrotransposition of marked Alu sequences. Nat Genet. 2003;35:41–8. https://doi.org/10.1038/ng1223.

    Article  CAS  PubMed  Google Scholar 

  156. Payer LM, Steranka JP, Yang WR, Kryatova M, Medabalimi S, Ardeljan D, et al. Structural variants caused by Alu insertions are associated with risks for many human diseases. Proc Natl Acad Sci U S A. 2017;114:E3984–92. https://doi.org/10.1073/pnas.1704117114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Han JS, Szak ST, Boeke JD. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature. 2004;429:268–74. https://doi.org/10.1038/nature02536.

    Article  CAS  PubMed  Google Scholar 

  158. Whitelaw E, Martin DIK. Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat Genet. 2001;27:361–5. https://doi.org/10.1038/86850.

    Article  CAS  PubMed  Google Scholar 

  159. Spadafora C. A LINE-1-encoded reverse transcriptase-dependent regulatory mechanism is active in embryogenesis and tumorigenesis. Ann N Y Acad Sci. 2015;1341:164–71. https://doi.org/10.1111/nyas.12637.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil; Grant number 204747/2018-0 to FBK), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil; Grant number 88887.371487/2019-00 to TSB), and the Stanley H. Kaplan Fund of the NYU Grossman School of Medicine (to DLK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Keefe.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohlrausch, F.B., Berteli, T.S., Wang, F. et al. Control of LINE-1 Expression Maintains Genome Integrity in Germline and Early Embryo Development. Reprod. Sci. 29, 328–340 (2022). https://doi.org/10.1007/s43032-021-00461-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00461-1

Keywords

Navigation