Skip to main content
Log in

A Local Discontinuous Galerkin Method for Two-Dimensional Time Fractional Diffusion Equations

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

For two-dimensional (2D) time fractional diffusion equations, we construct a numerical method based on a local discontinuous Galerkin (LDG) method in space and a finite difference scheme in time. We investigate the numerical stability and convergence of the method for both rectangular and triangular meshes and show that the method is unconditionally stable. Numerical results indicate the effectiveness and accuracy of the method and confirm the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Basu, T.S., Wang, H.: A fast second-order finite difference method for space-fractional diffusion equations. Int. J. Numer. Anal. Model. 9, 658–666 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Carella, A.R., Dorao, C.A.: Least-squares spectral method for the solution of a fractional advection–dispersion equation. J. Comput. Phys. 232, 33–45 (2013)

    MathSciNet  Google Scholar 

  3. Cockburn, B., Dong, B.: An analysis of the minimal dissipation local discontinuous Galerkin method for convection–diffusion problems. J. Sci. Comput. 32, 233–262 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Cockburn, B., Kanschat, G., Perugia, I., Schotzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Cui, M.R.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Deng, W.H., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional diffusion equations. Math. Model. Numer. Anal. 47, 1845–1864 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Deng, W.H., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional ordinary differential equations. BIT Numer. Math. 55, 967–985 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Ding, H.F., Li, C.P.: Mixed spline function method for reaction–subdiffusion equation. J. Comput. Phys. 242, 103–123 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Dong, B., Shu, C.W.: Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47, 3240–3268 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Du, R., Cao, W.R., Sun, Z.Z.: A compact difference scheme for the fractional diffusion–wave equation. Appl. Math. Model. 34, 2998–3007 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Ervin, V.J., Heuer, N., Roop, J.P.: Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45, 572–591 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Eshaghi, J., Kazem, S., Adibi, H.: The local discontinuous Galerkin method for 2D nonlinear time-fractional advection–diffusion equations. Eng. Comput. 35, 1317–1332 (2019). https://doi.org/10.1007/s00366-018-0665-8

    Article  Google Scholar 

  14. Fix, G., Roop, J.: Least squares finite element solution of a fractional order two-point boundary value problem. Comput. Math. Appl. 48, 1017–1033 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Gao, G.H., Sun, Z.Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Gao, G.H., Sun, Z., Zhang, H.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    MathSciNet  MATH  Google Scholar 

  17. He, J.H., Wu, X.H.: Variational iteration method: new development and applications. Comput. Math. Appl. 54, 881–894 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Huang, C., An, N., Yu, X.: A fully discrete direct discontinuous Galerkin method for the fractional diffusion–wave equation. Appl. Anal. 97, 659–675 (2018)

    MathSciNet  Google Scholar 

  19. Jiang, Y., Ma, J.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235, 3285–3290 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Karaa, S., Mustapha, K., Pani, Amiya K.: Finite volume element method for two-dimensional fractional subdiffusion problems. IMA J. Numer. Anal. 37, 945–964 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Kochubei, A., Luchko, Y. (eds.) Handbook of Fractional Calculus with Applications, vol. 1. Basic Theory. Walter de Gruyter GmbH, Berlin (2019)

  23. Li, C.Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Li, X.J., Xu, C.J.: A space–time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Li, C.P., Zeng, F.H.: The finite difference methods for fractional ordinary differential equations. Numer. Funct. Anal. Optim. 34, 149–179 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Liu, Y., Shu, C.W., Zhang, M.: Superconvergence of energy-conserving discontinuous Galerkin methods for linear hyperbolic equations. Commun. Appl. Math. Comput. 1, 101–116 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection–dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion. J. Comput. Appl. Math. 172, 65–77 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  32. Mokhtari, R., Mostajeran, F.: A high order formula to approximate the Caputo fractional derivative. Commun. Appl. Math. Comput. 2, 1–29 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Oldham, K., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration of Arbitray Order. Academic Press, New York (1974)

    MATH  Google Scholar 

  34. Podlubny, I., Chechkin, A., Skovranek, T., Chen, Y.Q., Jara, B.M.V.: Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. 228, 3137–3153 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Qiu, L., Deng, W., Hesthaven, J.S.: Nodal discontinuous Galerkin methods for fractional diffusion equations on \(2{\text{D}}\) domain with triangular meshes. J. Comput. Phys. 298, 678–694 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Roop, J.P.: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in \({\mathbb{R}}^2\). J. Comput. Appl. Math. 193, 243–268 (2006)

    MathSciNet  MATH  Google Scholar 

  37. Wang, H., Zhang, Q., Wang, S., Shu, C.W.: Local discontinuous Galerkin methods with explicit-implicit-null time discretizations for solving nonlinear diffusion problems. Sci. China Math. 63(1), 183–204 (2020). https://doi.org/10.1007/s11425-018-9524-x

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, H., Zhang, Q., Shu, C.W.: Third order implicit-explicit Runge–Kutta local discontinuous Galerkin methods with suitable boundary treatment for convection–diffusion problems with Dirichlet boundary conditions. J. Comput. Appl. Math. 342, 164–179 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Xu, Q., Zheng, Z.: Discontinuous Galerkin method for time fractional diffusion equation. J. Inf. Comput. Sci. 11, 3253–3264 (2013)

    Google Scholar 

  40. Yang, Q.Q., Turner, I., Liu, F., Ilic, M.: Novel numerical methods for solving the time space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput. 33, 1159–1180 (2011)

    MathSciNet  MATH  Google Scholar 

  41. Yeganeh, S., Mokhtari, R., Fouladi, S.: Using an LDG method for solving an inverse source problem of the time-fractional diffusion equation. Iran. J. Numer. Anal. Optim. 7, 115–135 (2017)

    MATH  Google Scholar 

  42. Yeganeh, S., Mokhtari, R., Hesthaven, J.S.: Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method. BIT Numer. Math. 57, 685–707 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, X., Tang, B., He, Y.: Homotopy analysis method for higher-order fractional integro-differential equations. Comput. Math. Appl. 62, 3194–3203 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Zhao, Y., Chen, P., Bu, W., Liu, X., Tang, Y.: Two mixed finite element methods for time-fractional diffusion equations. J. Sci. Comput. 70, 407–428 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Zhuang, P., Liu, F.: Finite difference approximation for two-dimensional time fractional diffusion equation. J. Algorithm Comput. Tech. 1, 1–15 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Mokhtari.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Appendix A

Appendix A

Another approximations to the time-fractional derivative (2) are L1-2 and L1-2-3 formulae [16, 32] which can be obtained by using quadratic and cubic interpolation formulae, respectively. The order of convergence with respect to the time variable for L1, L1-2, and L1-2-3 formulas are \(2-\alpha \), \(3-\alpha \), and \(4-\alpha \), respectively. We follow here just L1-2 formula which is

$$\begin{aligned} {\text{D}}^{\alpha }_{t}u(\cdot ,t_n)=\frac{(\Delta t)^{1-\alpha }}{\Gamma (2-\alpha )}\sum _{i=0}^{n-1}c_i\frac{u(\cdot ,t_{n-i})-u(\cdot ,t_{n-i-1})}{\Delta t}+\gamma ^n(\cdot ), \end{aligned}$$

where \(c_0=1\) for \(n=1\); and for \(n\geq 2\),

$$\begin{aligned} c_j=\left\{ \begin{array}{lll} a_0+d_0, &{} &{} j=0,\\ a_j+d_j-d_{j-1}, &{} &{} 1\leq j\leq n-2,\\ a_j-d_{j-1}, &{} &{} j=n-1, \end{array}\right. \end{aligned}$$

where

$$\begin{aligned} a_j=(j+1)^{(1-\alpha )}-j^{(1-\alpha )};~~~~~ 0\leq j\leq n-1, \end{aligned}$$

and

$$\begin{aligned} d_j=[(j+1)^{(2-\alpha )}-j^{(2-\alpha )}]/(2-\alpha )-[(j+1)^{(1-\alpha )}+j^{(1-\alpha )}]/2;~~~~~j\geq 0, \end{aligned}$$

and \(\gamma ^n\) is the truncation error with the estimate

$$\begin{aligned} \Vert \gamma ^n\Vert \leq \left\{ \begin{array}{lll} C (\Delta t)^{2-\alpha },&{} &{}n=1,\\ \\ C (\Delta t)^{3-\alpha },&{} &{}n\geq 2. \end{array}\right. \end{aligned}$$

Then, we can define a fully discrete LDG scheme as follows: find \((u_{h}, {\varvec{q}}_{h})\), such that for all test functions \((v, {\varvec{v}})\in V_{h}^{k}\times {\varvec{V}}_{h}^{k}\),

$$\begin{aligned} \left\{ \begin{array}{lll} \displaystyle (u^m_h, v)+\beta \left( ({\varvec{q}}^m_h, \nabla v)-\sum _{\kappa =1}^{K} \langle {\varvec{n}}\cdot \hat{{\varvec{q}}}^m_h, v\rangle _{\partial {D^\kappa }}\right) \\ =\beta (f^m, v) \displaystyle ~ +\sum _{i=1}^{m-1}(c_{i-1}-c_i)(u_h^{m-i}, v)+c_{m-1}(u_h^0, v),\\ \displaystyle ({\varvec{q}}^m_h, {\varvec{v}})+(u^m_h, \nabla \cdot {\varvec{v}})-\sum _{\kappa =1}^{K}\langle {\hat{u}}^m_h,{\varvec{n}}\cdot {\varvec{v}}\rangle _{\partial {D^\kappa }}=0, \end{array}\right. \end{aligned}$$
(A1)

where \(\beta =(\Delta t)^\alpha {\varvec{\Gamma }}(2-\alpha )\). In order to examine the convergence of the scheme (A1), we express the following result.

Theorem A1

Let \(u(\cdot ,t_n)\)be the exact solution of problem (1) with homogeneous Dirichlet boundary conditions, which is sufficiently smooth with bounded derivatives, and \(u_h^n\)be the numerical solution of the LDG scheme (23). There holds the following error estimate on Cartesian meshes:

$$\begin{aligned} \Vert u(\cdot ,t_n)-u_h^n\Vert \leq \left\{ \begin{array}{lll} C( h^{k+1}+(\Delta t)^2+(\Delta t)^{\frac{\alpha }{2}} h^{k+\frac{1}{2}}),&{} &{}n=1,\\ \\ C(h^{k+1}+(\Delta t)^2+(\Delta t)^{\frac{\alpha }{2}} h^{k+\frac{1}{2}}),&{} &{}n\geq 2, \end{array}\right. \end{aligned}$$

and on triangular meshes

$$\begin{aligned} \Vert u(\cdot ,t_n)-u_h^n\Vert \leq \left\{ \begin{array}{ll} C( h^{k+1}+(\Delta t)^2+(\Delta t)^{\frac{\alpha }{2}}h^k),&{}n=1,\\ C(h^{k+1}+(\Delta t)^2+(\Delta t)^\frac{\alpha }{2}h^k),&{}n\geq 2, \end{array}\right. \end{aligned}$$

where C is a constant depending on \(T, \alpha, \)and u.

Proof

It is more or less similar to the proof of Theorem 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeganeh, S., Mokhtari, R. & Hesthaven, J.S. A Local Discontinuous Galerkin Method for Two-Dimensional Time Fractional Diffusion Equations. Commun. Appl. Math. Comput. 2, 689–709 (2020). https://doi.org/10.1007/s42967-020-00065-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-020-00065-7

Keywords

Mathematics Subject Classification

Navigation