Skip to main content
Log in

A Local Discontinuous Galerkin Method for Time-Fractional Diffusion Equations

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, a local discontinuous Galerkin (LDG) scheme for the time-fractional diffusion equation is proposed and analyzed. The Caputo time-fractional derivative (of order α, with 0 < α < 1) is approximated by a finite difference method with an accuracy of order 3 − α, and the space discretization is based on the LDG method. For the finite difference method, we summarize and supplement some previous work by others, and apply it to the analysis of the convergence and stability of the proposed scheme. The optimal error estimate is obtained in the L2 norm, indicating that the scheme has temporal (3 − α) th-order accuracy and spatial (k + 1) th-order accuracy, where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space. The numerical results are also provided to verify the accuracy and efficiency of the considered scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikhanov A. A new difference scheme for the time fractional diffusion equation. J Comput Phys, 2015, 280: 424–438

    Article  MATH  Google Scholar 

  2. Baillie R. Long memory processes and fractional integration in econometrics. J Econom, 1996, 73(1): 5–59

    Article  MATH  Google Scholar 

  3. Baleanu D, Diethelm K, Scalas E, et al. Fractional Calculus: Models and Numerical Methods. Singapore: World Scientific, 2012

    Book  MATH  Google Scholar 

  4. Berkowitz B, Klafter J, Metzler R, et al. Physical pictures of transport in heterogeneous media: Advection-dispersion, random-walk, and fractional derivative formulations. Water Resour Res, 2002, 38(10): 1191

    Article  Google Scholar 

  5. Bronstein I, Israel Y, Kepten E, et al. Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys Rev Lett, 2009, 103(1): 018102

    Article  Google Scholar 

  6. Castillo P, Kanschat B, Schotzau D, et al. Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems. Math Comput, 2002, 71(238): 455–478

    Article  MATH  Google Scholar 

  7. Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II: General framework. Math Comput, 1989, 52(186): 411–435

    MATH  Google Scholar 

  8. Cockburn B, Shu C W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal, 1998, 35(6): 2440–2463

    Article  MATH  Google Scholar 

  9. Cockburn B, Kanschat G, Ilaria P, et al. Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J Numer Anal, 2001, 39(1): 264–285

    Article  MATH  Google Scholar 

  10. Dai H, Wei L, Zhang X. Numerical algorithm based on an implicit fully discrete local discontinuous Galerkin method for the fractional diffusion-wave equation. Numer Algorithms, 2014, 67(4): 845–862

    Article  MATH  Google Scholar 

  11. Deng W. Finite element method for the space and time fractional fokker-planck equation. SIAM J Numer Anal, 2008, 47(1): 204–226

    Article  MATH  Google Scholar 

  12. Du Y, Liu Y, Li H, et al. Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation. J Comput Phys, 2017, 344: 108–126

    Article  MATH  Google Scholar 

  13. Glöckle W, Nonnenmacher T. A fractional calculus approach to self-similar protein dynamics. Biophys J, 1995, 681(1): 46–53

    Article  Google Scholar 

  14. Hesthaven J S, Xu Q. Discontinuous Galerkin method for fractional convection-diffusion equations. SIAM J Numer Anal, 2014, 52(1): 405–423

    Article  MATH  Google Scholar 

  15. Hilfer R. Applications of Fractional Calculus in Physics. Singapore: World Scientific, 2000

    Book  MATH  Google Scholar 

  16. Ichise M, Nagayanagi Y, Kojima T. An analog simulation of non-integer order transfer functions for analysis of electrode processes. J Electroanal Chem, 1971, 33(2): 253–265

    Article  Google Scholar 

  17. Jin B, Lazarov R, Zhou Z. Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J Numer Anal, 2013, 51(1): 445–466

    Article  MATH  Google Scholar 

  18. Kilbas A, Srivastava H, Trujillo J. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006

    MATH  Google Scholar 

  19. Li C, Wang Z. The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Numerical analysis. Appl Numer Math, 2019, 140: 1–22

    Article  MATH  Google Scholar 

  20. Li X, Xu C. A space-time spectral method for the time fractional diffusion equation. SIAM J Numer Anal, 2009, 47(3): 2108–2131

    Article  MATH  Google Scholar 

  21. Lin Y, Xu C. Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys, 2007, 225(2): 1533–1552

    Article  MATH  Google Scholar 

  22. Liu C, Shen J. A phase field model for the mixture of two incompressible fluids and its approximation by a fourier-spectral method. Physica D, 2003, 179(3/4): 211–228

    Article  MATH  Google Scholar 

  23. Lv C, Xu C. Error analysis of a high order method for time-fractional diffusion equations. SIAM J Sci Comput, 2016, 38(5): A2699–A2724

    Article  MATH  Google Scholar 

  24. Meerschaert M, Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations. J Comput Appl Math, 2004, 172(1): 65–77

    Article  MATH  Google Scholar 

  25. Meerschaert M, Tadjeran C. Finite difference approximations for two-sided space-fractional partial differential equations. Appl Numer Math, 2006, 56(1): 80–90

    Article  MATH  Google Scholar 

  26. Metzler R, Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 2000, 339(1): 1–77

    Article  MATH  Google Scholar 

  27. Mustapha K, McLean W. Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer Algorithms, 2011, 56(2): 159–184

    Article  MATH  Google Scholar 

  28. Mustapha K, McLean W. Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation. IMA J Numer Anal, 2012, 32(3): 906–925

    Article  MATH  Google Scholar 

  29. Podlubny I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math Sci Engin, 2013, (3): 553–563

  30. Schroeder J, Hagiwara S. Cytosolic calcium regulates ion channels in the plasma membrane of vicia faba guard cells. Nature, 1989, 338(6214): 427–430

    Article  Google Scholar 

  31. Sun Z, Gao G, Zhang H. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J Comput Phys, 2014, 259: 33–50

    Article  MATH  Google Scholar 

  32. Yuan W, Huang Y, Chen Y. A local discontinuous Galerkin method for time-fractional Burgers equations. East Asian J Appl Math, 2020, 10(4): 818–837

    Article  MATH  Google Scholar 

  33. Wang Y, Ren L. A high-order L2-compact difference method for Caputo-type time-fractional sub-diffusion equations with variable coefficients. Appl Math Comput, 2019, 342: 71–93

    MATH  Google Scholar 

  34. Wei L, He Y. Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems. Appl Math Model, 2014, 38(4): 1511–1522

    Article  MATH  Google Scholar 

  35. Zhang Y, Sun Z, Liao H. Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J Comput Phys, 2014, 265: 195–210

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Chen  (陈艳萍).

Additional information

This work was supported by the State Key Program of National Natural Science Foundation of China (11931003) and the National Natural Science Foundation of China (41974133).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Z., Chen, Y. A Local Discontinuous Galerkin Method for Time-Fractional Diffusion Equations. Acta Math Sci 43, 839–854 (2023). https://doi.org/10.1007/s10473-023-0219-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-023-0219-z

Key words

2010 MR Subject Classification

Navigation