Skip to main content
Log in

Local discontinuous Galerkin methods with explicit-implicit-null time discretizations for solving nonlinear diffusion problems

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we discuss the local discontinuous Galerkin methods coupled with two specific explicit-implicit-null time discretizations for solving one-dimensional nonlinear diffusion problems Ut = (a(U)Ux)x. The basic idea is to add and subtract two equal terms a0Uxx on the right-hand side of the partial differential equation, then to treat the term a0Uxx implicitly and the other terms (a(U)Ux)xa0Uxx explicitly. We give stability analysis for the method on a simplified model by the aid of energy analysis, which gives a guidance for the choice of a0, i.e., a0 ≽ max{a(u)}/2 to ensure the unconditional stability of the first order and second order schemes. The optimal error estimate is also derived for the simplified model, and numerical experiments are given to demonstrate the stability, accuracy and performance of the schemes for nonlinear diffusion equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angenent S. Analyticity of the interface of the porous medium equation after waiting time. Proc Amer Math Soc, 1998, 102: 329–336

    Article  Google Scholar 

  2. Ascher U M, Ruuth S J, Spiteri R J. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl Numer Math, 1997, 25: 151–167

    Article  MathSciNet  Google Scholar 

  3. Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J Comput Phys, 1997, 131: 267–279

    Article  MathSciNet  Google Scholar 

  4. Boscarino S, Russo G. On a class of uniformly accurate IMEX Runge-Kutta schemes and application to hyperbolic systems with relaxation. SIAM J Sci Comput, 2009, 31: 1926–1945

    Article  MathSciNet  Google Scholar 

  5. Castillo P, Cockburn B, Schötzau D, et al. Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems. Math Comp, 2001, 71: 455–478

    Article  MathSciNet  Google Scholar 

  6. Cavaliere P, Zavarise G, Perillo M. Modeling of the carburizing and nitriding processes. Comp Mater Sci, 2009, 46: 26–35

    Article  Google Scholar 

  7. Cercignani C, Gamba I M, Jerome J W, et al. Device benchmark comparisons via kinetic, hydrodynamic, and high-field models. Comput Methods Appl Mech Engrg, 2000, 181: 381–392

    Article  MathSciNet  Google Scholar 

  8. Cercignani C, Gamba I M, Levermore C D. High field approximations to Boltzmann-Poisson system boundary conditions in a semiconductor. Appl Math Lett, 1997, 10: 111–117

    Article  MathSciNet  Google Scholar 

  9. Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam-New York: North-Holland, 1978

    MATH  Google Scholar 

  10. Cockburn B, Dong B. An analysis of the minimal dissipation local discontinuous Galerkin method for convection-diffusion problems. J Sci Comput, 2007, 32: 233–262

    Article  MathSciNet  Google Scholar 

  11. Cockburn B, Shu C-W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J Sci Comput, 2001, 16: 173–261

    Article  MathSciNet  Google Scholar 

  12. Cockburn B, Shu C-W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal, 1998, 35: 2440–2463

    Article  MathSciNet  Google Scholar 

  13. Cooper G J, Sayfy A. Additive Runge-Kutta methods for stiff ordinary differential equations. Math Comp, 1983, 40: 207–218

    Article  MathSciNet  Google Scholar 

  14. Douglas Jr. J, Dupont T F. Alternating-direction Galerkin methods on rectangles. In: Hubbard B, ed. Numerical Solution of Partial Differential Equations II. New York: Academic Press, 1971, 133–214

    Book  Google Scholar 

  15. Duchemin L, Eggers J. The explicit-implicit-null method: Removing the numerical instability of PDEs. J Comput Phys, 2014, 263: 37–52

    Article  MathSciNet  Google Scholar 

  16. Ewing R E, Wheeler M F. Galerkin methods for miscible displacement problems in porous media. SIAM J Numer Anal, 1980, 17: 351–365

    Article  MathSciNet  Google Scholar 

  17. Filbet F, Jin S. A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J Comput Phys, 2010, 229: 7625–7648

    Article  MathSciNet  Google Scholar 

  18. Levy D, Tadmor E. From semidiscrete to fully discrete: Stability of Runge-Kutta schemes by the energy method. SIAM Rev, 1998, 40: 40–73

    Article  MathSciNet  Google Scholar 

  19. Liu Y, Shu C-W. Error analysis of the semi-discrete local discontinuous Galerkin method for semiconductor device simulation models. Sci China Math, 2010, 53: 3255–3278

    Article  MathSciNet  Google Scholar 

  20. Liu Y, Shu C-W. Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices. Sci China Math, 2016, 59: 115–140

    Article  MathSciNet  Google Scholar 

  21. Macdonald C B, Ruuth S J. The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM J Sci Comput, 2009, 31: 4330–4350

    Article  MathSciNet  Google Scholar 

  22. Smereka P. Semi-implicit level set methods for curvature and surface diffusion motion. J Sci Comput, 2003, 19: 439–456

    Article  MathSciNet  Google Scholar 

  23. Wang H J, Shu C-W, Zhang Q. Stability and error estimates of the local discontinuous Galerkin method with implicit-explicit time-marching for advection-diffusion problems. SIAM J Numer Anal, 2015, 53: 206–227

    Article  MathSciNet  Google Scholar 

  24. Wang H J, Zhang Q, Shu C-W. Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for the time-dependent fourth order PDEs. ESAIM: M2AN, 2017, 51: 1931–1955

    Article  MathSciNet  Google Scholar 

  25. Wang H J, Zhang Q, Shu C-W. Third order implicit-explicit Runge-Kutta local discontinuous Galerkin methods with suitable boundary treatment for convection-diffusion problems with Dirichlet boundary conditions. J Comput Appl Math, 2018, 342: 164–179

    Article  MathSciNet  Google Scholar 

  26. Xu Y, Shu C-W. Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun Comput Phys, 2010, 7: 1–46

    MathSciNet  MATH  Google Scholar 

  27. Yan J, Shu C-W. Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J Sci Comput, 2002, 17: 27–47

    Article  MathSciNet  Google Scholar 

  28. Zhang Q, Gao F Z. A fully-discrete local discontinuous Galerkin method for convection-dominated Sobolev equation. J Sci Comput, 2012, 51: 107–134

    Article  MathSciNet  Google Scholar 

  29. Zhang Q, Wu Z. Numerical simulation for porous medium equation by local discontinuous Galerkin finite element method. J Sci Comput, 2009, 38: 127–148

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11601241, 11671199, 11571290 and 11672082), Natural Science Foundation of Jiangsu Province (Grant No. BK20160877), ARO (Grant No. W911NF-15-1-0226) and National Science Foundation of USA (Grant No. DMS-1719410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Wang Shu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, Q., Wang, S. et al. Local discontinuous Galerkin methods with explicit-implicit-null time discretizations for solving nonlinear diffusion problems. Sci. China Math. 63, 183–204 (2020). https://doi.org/10.1007/s11425-018-9524-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-018-9524-x

Keywords

MSC(2010)

Navigation