Skip to main content
Log in

Additive manufacturing of tungsten, tungsten-based alloys, and tungsten matrix composites

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Tungsten (W) materials are gaining more and more attention due to the extended applications of metallic systems in the extreme environments. Given W’s unique characteristics like room-temperature brittleness, additive manufacturing (AM) techniques could give them a higher design flexibility and manufacturability. With the growing focus and thriving development of W-faced AM techniques, since the mechanical performance of additively manufactured W parts is still unsatisfactory, a critical review to further explore the possibilities of combining W and AM processes is urgently needed. In this review, we systematically explain the fundamentals of AM processes for W materials. Following the traditional classification, we further discuss the widely used AM processes including wire arc additive manufacturing (WAAM), electron beam melting (EBM), laser powder bed fusion (LPBF), laser direct energy deposition (laser DED), and other modified yet emergent AM techniques. Accordingly, since additively manufacturing W materials is processing parameter-sensitive, we illustrated the effects of various important processing parameters on the AM process control and final parts’ quality. With this detailed understanding, various categories of AM-compatible W materials (i.e., pure W, W alloys, and W composites) were presented, and their general mechanical performance, distinct role (particularly the role of different alloying elements and added secondary-phase particles in W), and application-oriented benefits have been summarized. After clarifying the current status, main challenges, and triumphant successes for additively manufacturing W materials, we further provide a concise prospect into the development of additively manufactured (AMed) W materials by integrating potential fabrication, measurement, alloy design, and application’s considerations. In summary, this critical review investigates the fundamental and practical problems crucially limiting the applications of AMed W materials, and the comprehensive discussion concentrates the history of the development and combination between AM techniques and W design. All the understanding is of great importance to achieving foreseeable successful future applications of AMed W materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Reproduced with permission from Ref. [24], © Elsevier Ltd. 2020

Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Reproduced with permission from Ref. [7], © Elsevier Ltd. 2018

Fig. 17
Fig. 18
Fig. 19
Fig. 20

Reproduced with permission from Ref.[179], © Acta Materialia Inc. by Elsevier Ltd. 2022

Fig. 21

Similar content being viewed by others

References

  1. Xie J, Lu H, Lu J, Song X, Wu S, Lei J. Additive manufacturing of tungsten using directed energy deposition for potential nuclear fusion application. Surf Coat Technol. 2021;409: 126884.

    Article  CAS  Google Scholar 

  2. Wang G, Qin Y, Yang S. Influence of Ni additions on the microstructure and tensile property of W-Cu composites produced by direct energy deposition. J Alloy Compd. 2022;899: 163272.

    Article  CAS  Google Scholar 

  3. Wei C, Liu L, Gu Y, Huang Y, Chen Q, Li Z, Li L. Multi-material additive-manufacturing of tungsten—copper alloy bimetallic structure with a stainless-steel interlayer and associated bonding mechanisms. Addit Manuf. 2022;50: 102574.

    CAS  Google Scholar 

  4. Su S, Lu Y. Densified WCu composite fabricated via laser additive manufacturing. Int J Refract Metal Hard Mater. 2020;87: 105122.

    Article  CAS  Google Scholar 

  5. Oponowicz A, Marciszko-Wiąckowska M, Baczmański A, Klaus M, Genzel C, Wroński S, Kollbek K, Wróbel M. Gradient of residual stress and lattice parameter in mechanically polished tungsten measured using classical x-rays and synchrotron radiation. Metall Mater Trans A. 2020;51(11):5945.

    Article  CAS  Google Scholar 

  6. Iveković A, Omidvari N, Vrancken B, Lietaert K, Thijs L, Vanmeensel K, Vleugels J, Kruth J. Selective laser melting of tungsten and tungsten alloys. Int J Refract Metal Hard Mater. 2018;72:27.

    Article  Google Scholar 

  7. Li K, Wang D, Xing L, Wang Y, Yu C, Chen J, Zhang T, Ma J, Liu W, Shen Z. Crack suppression in additively manufactured tungsten by introducing secondary-phase nanoparticles into the matrix. Int J Refract Metal Hard Mater. 2019;79:158.

    Article  CAS  Google Scholar 

  8. Ren X, Liu H, Lu F, Huang L, Yi X. Effects of processing parameters on the densification, microstructure and mechanical properties of pure tungsten fabricated by optimized selective laser melting: from single and multiple scan tracks to bulk parts. Int J Refract Metal Hard Mater. 2021;96: 105490.

    Article  CAS  Google Scholar 

  9. Matthews M, Trapp J, Guss G, Rubenchik A. Direct measurements of laser absorptivity during metal melt pool formation associated with powder bed fusion additive manufacturing processes. J Laser Appl. 2018;30(3): 032302.

    Article  Google Scholar 

  10. Vrancken B, Ganeriwala R, Matthews M. Analysis of laser-induced microcracking in tungsten under additive manufacturing conditions: experiment and simulation. Acta Mater. 2020;194:464.

    Article  CAS  Google Scholar 

  11. Zhou X, Liu X, Zhang D, Shen Z, Liu W. Balling phenomena in selective laser melted tungsten. J Mater Process Technol. 2015;222:33.

    Article  CAS  Google Scholar 

  12. Ellis E, Sprayberry M, Ledford C, Hankwitz J, Kirka M, Rock C, Horn T, Katoh Y, Dehoff R. Processing of tungsten through electron beam melting. J Nucl Mater. 2021;555: 153041.

    Article  CAS  Google Scholar 

  13. Seeger A. Peierls barriers, kinks, and flow stress: recent progress. Int J Mater Res. 2002;93(8):760.

    CAS  Google Scholar 

  14. Müller A, Schlick G, Neu R, Anstätt C, Klimkait T, Lee J, Pascher B, Schmitt M, Seidel C. Additive manufacturing of pure tungsten by means of selective laser beam melting with substrate preheating temperatures up to 1000 C. Nucl Mater Energy. 2019;19:184.

    Article  Google Scholar 

  15. Lassner E, Schubert W. Tungsten: properties, chemistry, technology of the elements, alloys, and chemical compounds. New York: Springer Science & Business Media; 1978.

    Google Scholar 

  16. Mitteau R, Missiaen J, Brustolin P, Ozer O, Durocher A, Ruset C, Lungu C, Courtois X, Dominicy C, Maier H, Grisolia C, Piazza G, Chappuis P. Recent developments toward the use of tungsten as armour material in plasma facing components. Fusion Eng Des. 2007;82(15):1700.

    Article  CAS  Google Scholar 

  17. Gu D, Meiners W, Wissenbach K, Poprawe R. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev. 2012;57(3):133.

    Article  CAS  Google Scholar 

  18. Tan C, Zhou K, Ma W, Attard B, Zhang P, Kuang T. Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties. Sci Technol Adv Mater. 2018;19(1):370.

    Article  CAS  Google Scholar 

  19. Chen H, Ye L, Han Y, Chen C, Fan J. Additive manufacturing of W-Fe composites using laser metal deposition: microstructure, phase transformation, and mechanical properties. Mater Sci Eng A. 2021;811: 141036.

    Article  CAS  Google Scholar 

  20. Wang G, Sun X, Huang M, Qin Y, Yao Y, Yang S. Influence of processing parameters on the microstructure and tensile property of 85 W-15Ni produced by laser direct deposition. Int J Refract Metal Hard Mater. 2019;82:227.

    Article  CAS  Google Scholar 

  21. Chen H, Zi X, Han Y, Dong J, Liu S, Chen C. Microstructure and mechanical properties of additive manufactured W–Ni–Fe–Co composite produced by selective laser melting. Int J Refract Metal Hard Mater. 2020;86:105111.

    Article  CAS  Google Scholar 

  22. Guo Z, Wang L, Wang X. Additive manufacturing of W-12Ta(wt%) alloy: processing and resulting mechanical properties. J Alloy Compd. 2021;868:159193.

    Article  CAS  Google Scholar 

  23. Tan Z, Zhou Z, Wu X, Wang Y, Shao W, Guo X, Zhou Z, Yang Y, Wang G, He D. In situ synthesis of spherical WMo Alloy powder for additive manufacturing by spray granulation combined with thermal plasma spheroidization. Int J Refract Metal Hard Mater. 2021;95: 105460.

    Article  CAS  Google Scholar 

  24. Wang G, Qin Y, Yang S. Characterization of laser-powder interaction and particle transport phenomena during laser direct deposition of W-Cu composite. Addit Manuf. 2021;37: 101722.

    CAS  Google Scholar 

  25. Rosenthal D. Mathematical theory of heat distribution during welding and cutting. Weld J. 1941;20:220.

    Google Scholar 

  26. Nunes A. An extended rosenthal weld model. Weld J. 1983;62(6):165.

    Google Scholar 

  27. Vilar R. Laser powder deposition. Compr Mater Process. 2014;10:163.

    Article  Google Scholar 

  28. Thompson S, Bian L, Shamsaei N, Yadollahi A. An overview of direct laser deposition for additive manufacturing; Part I: transport phenomena, modeling and diagnostics. Addit Manuf. 2015;8:36.

    Google Scholar 

  29. Zhao X, An N, Yang G, Wang J, Tang H, Li M, Zhou J. Enhancing standard finite element codes with POD for reduced order thermal analysis: application to electron beam melting of pure tungsten. Mater Today Commun. 2021;29: 102796.

    Article  CAS  Google Scholar 

  30. Han Y, Fan J, Liu T, Cheng H, Tian J. The effect of trace nickel additive and ball milling treatment on the near-full densification behavior of ultrafine tungsten powder. Int J Refract Metal Hard Mater. 2012;34:18.

    Article  CAS  Google Scholar 

  31. Du Z, Lv Y, Han Y, Fan J, Ye L. Sintering densification behavior and kinetic mechanism of nano-tungsten powder prepared by sol-spray drying. Tungsten. 2020;2(4):371.

    Article  Google Scholar 

  32. Chalmers B. Principles of solidification. 1st ed. Boston: Springer; 1970. p. 161.

    Google Scholar 

  33. Pan S, Yao G, Sokoluk M, Guan Z, Li X. Enhanced thermal stability in Cu-40 wt% Zn/WC nanocomposite. Mater Des. 2019;180: 107964.

    Article  CAS  Google Scholar 

  34. Pan S, Guan Z, Yao G, Yuan J, Li X. Mo-enhanced chemical stability of TiC nanoparticles in molten Al. J Alloy Compd. 2020;856: 158169.

    Article  Google Scholar 

  35. Wang H, Zak Fang Z, Hwang K. Kinetics of initial coarsening during sintering of nanosized powders. Metall Mater Trans A. 2011;42(11):3534.

    Article  CAS  Google Scholar 

  36. Wang L, Wu J, Zhang D. Properties evolution of additive manufacture used tungsten powders prepared by radio frequency induction plasma. Int J Refract Metal Hard Mater. 2017;67:90.

    Article  CAS  Google Scholar 

  37. Zi X, Chen C, Wang X, Wang P, Zhang X, Zhou K. Spheroidisation of Tungsten Powder by Radio Frequency Plasma for Selective Laser Melting. Mater Sci Technol. 2018;34(6):735.

    Article  CAS  Google Scholar 

  38. Wu Y. Manufacturing of tungsten and tungsten composites for fusion application via different routes. Tungsten. 2019;1(1):80.

    Article  Google Scholar 

  39. Klopp W, Raffo P, Witzke W. Mechanical properties of dilute tungsten-rhenium alloys. Urbana-Champaign: NASA; 1966.

    Google Scholar 

  40. Marinelli G, Martina F, Lewtas H, Hancock D, Mehraban S, Lavery N, Ganguly S, Williams S. Microstructure and thermal properties of unalloyed tungsten deposited by wire + arc additive manufacture. J Nucl Mater. 2019;522:45.

    Article  CAS  Google Scholar 

  41. Marinelli G, Martina F, Ganguly S, Williams S. Development of wire + arc additive manufacturing for the production of large-scale unalloyed tungsten components. Int J Refract Metal Hard Mater. 2019;82:329.

    Article  CAS  Google Scholar 

  42. Klein T, Schnall M, Gomes B, Warczok P, Fleischhacker D, Morais P. Wire-arc additive manufacturing of a novel high-performance Al–Zn–Mg–Cu alloy: processing, characterization and feasibility demonstration. Add Manuf. 2021;37: 101663.

    CAS  Google Scholar 

  43. Galati M. Electron beam melting process: a general overview. Handbooks in advanced manufacturing. Amsterdam: Elsevier; 2021. p. 277.

    Google Scholar 

  44. Yang G, Yang P, Yang K, Liu N, Jia L, Wang J, Tang H. Effect of processing parameters on the density, microstructure and strength of pure tungsten fabricated by selective electron beam melting. Int J Refract Metal Hard Mater. 2019;84: 105040.

    Article  CAS  Google Scholar 

  45. Wright J. Additive manufacturing of tungsten via selective laser melting and electron beam melting. Degree thesis. University of Sheffield, Sheffield. 2019.

  46. Liao W, Liu Z, He M, Feng C, Wang F, Huang J. Effect of Electron Beam Remelting Treatments on the Microstructure and Properties of Atmospheric Plasma Sprayed Tungsten Coatings. J Therm Spray Tech. 2021;30(8):2128.

    Article  CAS  Google Scholar 

  47. Guo M, Gu D, Xi L, Du L, Zhang H, Zhang J. Formation of scanning tracks during selective laser melting (SLM) of pure tungsten powder: morphology, geometric features and forming mechanisms. Int J Refract Metal Hard Mater. 2019;79:37.

    Article  CAS  Google Scholar 

  48. Wang D, Wang Z, Li K, Ma J, Liu W, Shen Z. Cracking in laser additively manufactured W: initiation mechanism and a suppression approach by alloying. Mater Des. 2019;162:384.

    Article  CAS  Google Scholar 

  49. AbuShanab W, Moustafa E. Effects of friction stir processing parameters on the wear resistance and mechanical properties of fabricated metal matrix nanocomposites (MMNCs) surface. J Market Res. 2020;9(4):7460.

    CAS  Google Scholar 

  50. Wang D, Yu C, Zhou X, Ma J, Liu W, Shen Z. Dense pure tungsten fabricated by selective laser melting. Appl Sci. 2017;7(4):430.

    Article  Google Scholar 

  51. Wen S, Wang C, Zhou Y, Duan L, Wei Q, Yang S, Shi Y. High-density tungsten fabricated by selective laser melting: densification, microstructure, mechanical and thermal performance. Opt Laser Technol. 2019;116:128.

    Article  CAS  Google Scholar 

  52. Bai S, Liu J, Yang P, Zhai M, Huang H, Yang L. Femtosecond fiber laser additive manufacturing of tungsten. Laser 3D Manuf III. 2016;9738:96.

    Google Scholar 

  53. Zhou S, Liang Y, Zhu Y, Wang B, Wang L, Xue Y. Ultrashort-time liquid phase sintering of high-performance fine-grain tungsten heavy alloys by laser additive manufacturing. J Mater Sci Technol. 2021;90:30.

    Article  CAS  Google Scholar 

  54. Jeong W, Kwon Y, Kim D. Three-dimensional printing of tungsten structures by directed energy deposition. Mater Manuf Processes. 2019;34(9):986.

    Article  CAS  Google Scholar 

  55. Li C, Ma S, Liu X, Li J, Le G. Microstructures and properties of 80w–20Fe alloys prepared using laser melting deposition process. Int J Refract Metal Hard Mater. 2018;77:113.

    Article  CAS  Google Scholar 

  56. Gokcekaya O, Ishimoto T, Todo T, Wang P, Nakano T. Influence of powder characteristics on densification via crystallographic texture formation: pure tungsten prepared by laser powder bed fusion. Addit Manuf Lett. 2021;1: 100016.

    Article  Google Scholar 

  57. Klahn C, Leutenecker B, Meboldt M. Design strategies for the process of additive manufacturing. Procedia CIRP. 2015;36:230.

    Article  Google Scholar 

  58. Gokuldoss P, Kolla S, Eckert J. Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting—selection guidelines. Materials. 2017;10(6):672.

    Article  Google Scholar 

  59. Dohale V, Akarte M, Gupta S, Verma V. Additive manufacturing process selection using MCDM. Singapore: Springer; 2021. p. 601.

    Google Scholar 

  60. Zaman U, Rivette M, Siadat A, Mousavi S. Integrated product-process design: material and manufacturing process selection for additive manufacturing using multi-criteria decision making. Robot Comput Integr Manuf. 2018;51:169.

    Article  Google Scholar 

  61. Qin Y, Qi Q, Scott P, Jiang X. An additive manufacturing process selection approach based on fuzzy archimedean weighted power bonferroni aggregation operators. Robot Comput Integr Manuf. 2020;64: 101926.

    Article  Google Scholar 

  62. Agrawal R. Sustainable material selection for additive manufacturing technologies: a critical analysis of rank reversal approach. J Clean Prod. 2021;296: 126500.

    Article  Google Scholar 

  63. Wang Y, Ma S, Yang X, Zhou Y, Liu X, Li J, Zhang J, Li C, Wang X, Le G, Zhang Y. Microstructure and strengthening mechanisms of 90W–7Ni–3Fe alloys prepared using laser melting deposition. J Alloy Compd. 2020;838: 155545.

    Article  CAS  Google Scholar 

  64. Stawovy M, Myers K, Ohm S. Binder jet printing of tungsten heavy alloy. Int J Refract Metal Hard Mater. 2019;83: 104981.

    Article  CAS  Google Scholar 

  65. Cole N, Gilliland R, Slaughter G. Weldability of tungsten and its alloys. Weld J. 1971;50(9):419.

    Google Scholar 

  66. Kurishita H, Matsuo S, Arakawa H, Sakamoto T, Kobayashi S, Nakai K, Okano H, Watanabe H, Yoshida N, Torikai Y, Hatano Y, Takida T, Kato M, Ikegaya A, Ueda Y, Hatakeyama M, Shikama T. Current status of nanostructured tungsten-based materials development. Phys Scr. 2014;T159: 014032.

    Article  CAS  Google Scholar 

  67. Nagy D, Humphry-Baker S. An oxidation mechanism map for tungsten. Scr Mater. 2022;209: 114373.

    Article  CAS  Google Scholar 

  68. Braun J, Kaserer L, Stajkovic J, Leitz K, Tabernig B, Singer P, Leibenguth P, Gspan C, Kestler H, Leichtfried G. Molybdenum and tungsten manufactured by selective laser melting: analysis of defect structure and solidification mechanisms. Int J Refract Metal Hard Mater. 2019;84: 104999.

    Article  CAS  Google Scholar 

  69. Warren A, Nylund A, Olefjord I. Oxidation of tungsten and tungsten carbide in dry and humid atmospheres. Int J Refract Metal Hard Mater. 1996;14(5):345.

    Article  CAS  Google Scholar 

  70. Ledford C, Rock C, Carriere P, Frigola P, Gamzina D, Horn T. Characteristics and processing of hydrogen-treated copper powders for EB-PBF additive manufacturing. Appl Sci. 2019;9(19):3993.

    Article  CAS  Google Scholar 

  71. Li C, Wang Y, Ma S, Yang X, Li J, Zhou Y, Liu X, Tang J, Wang X, Le G. Densification, microstructural evolutions of 90W–7Ni-3Fe tungsten heavy alloys during laser melting deposition process. Int J Refract Metal Hard Mater. 2020;91: 105254.

    Article  CAS  Google Scholar 

  72. Savitskii E. Physical metallurgy of refractory metals and alloys. 3rd ed. New York: Springer; 2012.

    Google Scholar 

  73. Wendel J. Thermodynamics and kinetics of tungsten oxidation and tungsten oxide sublimation in the temperature interval 200°–1100°C. Degree thesis, Lund University, Lund, 2014

  74. Sochalski-Kolbus L, Payzant E, Cornwell P, Watkins T, Babu S, Dehoff R, Lorenz M, Ovchinnikova O, Duty C. Comparison of residual stresses in inconel 718 simple parts made by electron beam melting and direct laser metal sintering. Metall Mater Trans A. 2015;46(3):1419.

    Article  CAS  Google Scholar 

  75. Yamamoto T, Hara M, Hatano Y. Effects of fabrication conditions on the microstructure, pore characteristics and gas retention of pure tungsten prepared by laser powder bed fusion. Int J Refract Metal Hard Mater. 2021;95: 105410.

    Article  CAS  Google Scholar 

  76. Xue J, Feng Z, Tang J, Tang C, Zhao Z. Selective laser melting additive manufacturing of tungsten with niobium alloying: microstructure and suppression mechanism of microcracks. J Alloy Compd. 2021;874: 159879.

    Article  CAS  Google Scholar 

  77. Cunningham R, Zhao C, Parab N, Kantzos C, Pauza J, Fezzaa K, Sun T, Rollett A. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed X-ray imaging. Science. 2019;363(6429):849.

    Article  CAS  Google Scholar 

  78. Gan Z, Kafka O, Parab N, Zhao C, Fang L, Heinonen O, Sun T, Liu W. Universal scaling laws of keyhole stability and porosity in 3D printing of metals. Nat Commun. 2021;12(1):2379.

    Article  CAS  Google Scholar 

  79. Srivatsan T, Sudarshan T. Additive manufacturing: innovations, advances, and applications. 1st ed. Boca Raton: CRC Press; 2015.

    Book  Google Scholar 

  80. Tang M, Pistorius P. Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting. Int J Fatigue. 2017;94:192.

    Article  CAS  Google Scholar 

  81. Wysocki B, Maj P, Sitek R, Buhagiar J, Kurzydłowski K, Święszkowski W. Laser and electron beam additive manufacturing methods of fabricating titanium bone implants. Appl Sci. 2017;7(7):657.

    Article  Google Scholar 

  82. Enneti R, Morgan R, Atre S. Effect of process parameters on the selective laser melting (SLM) of tungsten. Int J Refract Metal Hard Mater. 2018;71:315.

    Article  CAS  Google Scholar 

  83. Aversa A, Moshiri M, Librera E, Hadi M, Marchese G, Manfredi D, Lorusso M, Calignano F, Biamino S, Lombardi M, Pavese M. Single scan track analyses on aluminium based powders. J Mater Process Technol. 2018;255:17.

    Article  CAS  Google Scholar 

  84. Vrancken B, Ganeriwala R, Martin A, Matthews M. Microcrack mitigation during laser scanning of tungsten via preheating and alloying strategies. Addit Manuf. 2021;46: 102158.

    CAS  Google Scholar 

  85. Zhong M, Liu W, Ning G, Yang L, Chen Y. Laser direct manufacturing of tungsten nickel collimation component. J Mater Process Technol. 2004;147(2):167.

    Article  CAS  Google Scholar 

  86. Zhang D, Cai Q, Liu J. Formation of nanocrystalline tungsten by selective laser melting of tungsten powder. Mater Manuf Processes. 2012;27(12):1267.

    Article  CAS  Google Scholar 

  87. Ng G, Jarfors A, Bi G, Zheng H. Porosity formation and gas bubble retention in laser metal deposition. Appl Phys A. 2009;97(3):641.

    Article  CAS  Google Scholar 

  88. Adamson A. Potential distortion model for contact angle and spreading. II. Temperature dependent effects. J Colloid Interface Sci. 1973;44(2):273.

    Article  CAS  Google Scholar 

  89. Muramatsu Y, Harada K, Dan T, Isoda Y. Solid-liquid interfacial tension of the W-Cu system. J Jpn Inst Met. 1990;54:6.

    Article  Google Scholar 

  90. Pan S, Zheng T, Yao G, Chi Y, De Rosa I, Li X. High-strength and high-conductivity in situ Cu–TiB2 nanocomposites. Mater Sci Eng A. 2022;831: 141952.

    Article  CAS  Google Scholar 

  91. Hamidi A, Arabi H, Rastegari S. Tungsten-copper composite production by activated sintering and infiltration. Int J Refract Metal Hard Mater. 2011;29(4):538.

    Article  CAS  Google Scholar 

  92. Gupta V, Yoon D, Meyer H, Luo J. Thin intergranular films and solid-state activated sintering in nickel-doped tungsten. Acta Mater. 2007;55(9):3131.

    Article  CAS  Google Scholar 

  93. Wei C, Gu H, Gu Y, Liu L, Huang Y, Cheng D, Li Z, Li L. Abnormal interfacial bonding mechanisms of multi-material additive-manufactured tungsten-stainless steel sandwich structure. Int J Extrem Manuf. 2022;4: 025002.

    Article  Google Scholar 

  94. Zhang J, Gu D, Yang Y, Zhang H, Chen H, Dai D, Lin K. Influence of particle size on laser absorption and scanning track formation mechanisms of pure tungsten powder during selective laser melting. Engineering. 2019;5(4):736.

    Article  CAS  Google Scholar 

  95. Field A, Carter L, Adkins N, Attallah M, Gorley M, Strangwood M. The effect of powder characteristics on build quality of high-purity tungsten produced via laser powder bed fusion (LPBF). Metall Mater Trans A. 2020;51(3):1367.

    Article  CAS  Google Scholar 

  96. Enneti R, Morgan R, Wolfe T, Harooni A, Volk S. Direct metal laser sintering (DMLS) of tungsten powders. Proceedings for Additive Manufacturing with Powder Metallurgy (AMPM). Las Vegas, USA, 2017

  97. Guo M, Gu D, Xi L, Zhang H, Zhang J, Yang J, Wang R. Selective laser melting additive manufacturing of pure tungsten: role of volumetric energy density on densification, microstructure and mechanical properties. Int J Refract Metal Hard Mater. 2019;84: 105025.

    Article  CAS  Google Scholar 

  98. Wang D, Li K, Yu C, Ma J, Liu W, Shen Z. Cracking behavior in additively manufactured pure tungsten. Acta Metall Sin (Engl Lett). 2019;32(1):127.

    Article  CAS  Google Scholar 

  99. Deprez K, Vandenberghe S, Van Audenhaege K, Van Vaerenbergh J, Van Holen R. Rapid additive manufacturing of MR compatible multipinhole collimators with selective laser melting of tungsten powder. Med Phys. 2013;40(1): 012501.

    Article  Google Scholar 

  100. Sidambe A, Judson D, Colosimo S, Fox P. Laser powder bed fusion of a pure tungsten ultra-fine single pinhole collimator for use in gamma ray detector characterisation. Int J Refract Metal Hard Mater. 2019;84: 104998.

    Article  CAS  Google Scholar 

  101. Gear J, Taprogge J, White O, Flux G. Characterisation of the attenuation properties of 3D-printed tungsten for use in gamma camera collimation. EJNMMI Phys. 2019;6(1):1.

    Article  Google Scholar 

  102. Sidambe A, Tian Y, Prangnell P, Fox P. Effect of processing parameters on the densification, microstructure and crystallographic texture during the laser powder bed fusion of pure tungsten. Int J Refract Metal Hard Mater. 2019;78:254.

    Article  CAS  Google Scholar 

  103. Zhou Z, Tan Z, He D, Zhou Z, Cui L, Wang Y, Shao W, Wang G. Fabrication of three-dimensional connected W-Cu10Sn composites by selective laser melting. Mater Lett. 2020;264: 127377.

    Article  CAS  Google Scholar 

  104. Li J, Wei Z, Zhou B, Wu Y, Chen S, Sun Z. Densification, microstructure and properties of 90W–7Ni-3Fe fabricated by selective laser melting. Metals. 2019;9(8):884.

    Article  Google Scholar 

  105. Song C, Yang Y, Liu Y, Luo Z, Yu J. Study on manufacturing of W-Cu alloy thin wall parts by selective laser melting. Int J Adv Manuf Technol. 2015;78(5):885.

    Article  Google Scholar 

  106. Li R, Shi Y, Liu J, Xie Z, Wang Z. Selective laser melting W–10 w.t% Cu composite powders. Int J Adv Manuf Technol. 2010;48(5):597.

    Article  CAS  Google Scholar 

  107. Hu Z, Liu Y, Wu J, Dong J, Ma Z, Liu Y. The simultaneous improvement of strength and ductility of the 93W–4.6Ni-2.4Fe prepared by additive manufacturing via optimizing sintering post-treatment. Addit Manuf. 2021;46:102216.

    CAS  Google Scholar 

  108. Bose A, Schuh C, Tobia J, Tuncer N, Mykulowycz N, Preston A, Barbati A, Kernan B, Gibson M, Krause D, Brzezinski T, Schroers J, Fulop R, Myerberg J, Sowerbutts M, Chiang Y, John Hart A, Sachs E, Lomeli E, Lund A. Traditional and additive manufacturing of a new tungsten heavy alloy alternative. Int J Refract Metal Hard Mater. 2018;73:22.

    Article  CAS  Google Scholar 

  109. Zhang D, Liu Z, Cai Q, Liu J, Chua C. Influence of Ni content on microstructure of W-Ni Alloy produced by selective laser melting. Int J Refract Metal Hard Mater. 2014;45:15.

    Article  CAS  Google Scholar 

  110. Bose A, German R. Microstructural refinement of W-Ni-Fe heavy alloys by alloying additions. Metall Mater Trans A. 1988;19(12):3100.

    Article  Google Scholar 

  111. Chookajorn T, Park M, Schuh C. Duplex nanocrystalline alloys: entropic nanostructure stabilization and a case study on W-Cr. J Mater Res. 2015;30(2):151.

    Article  CAS  Google Scholar 

  112. Li K, Li Y, Chen W, Zhao C, Yuan Y, Cheng L, Morgan T, Liu W, Shen Z. Effect of Ta addition on the fuzz formation of additively manufactured W-based materials. Nucl Fusion. 2020;60(6): 064004.

    Article  CAS  Google Scholar 

  113. Li J, Wei Z, Zhou B, Wu Y, Chen S, Sun Z. Preparation, microstructure, and microhardness of selective laser-melted W–3Ta sample. J Mater Res. 2020;35(15):2016.

    Article  CAS  Google Scholar 

  114. Yamamoto T, Hara M, Hatano Y. Cracking behavior and microstructural, mechanical and thermal characteristics of tungsten-rhenium binary alloys fabricated by laser powder bed fusion. Int J Refract Metal Hard Mater. 2021;100: 105651.

    Article  CAS  Google Scholar 

  115. Li K, Ma G, Xing L, Wang Y, Yu C, Chen J, Ma J, Wu G, Liu W, Shen Z, Huang X. Crack suppression via in-situ oxidation in additively manufactured W-Ta alloy. Mater Lett. 2020;263: 127212.

    Article  CAS  Google Scholar 

  116. Calvo A, Schlueter K, Tejado E, Pintsuk G, Ordás N, Iturriza I, Neu R, Pastor J, García-Rosales C. Self-passivating tungsten alloys of the system W–Cr–Y for high temperature applications. Int J Refract Metal Hard Mater. 2018;73:29.

    Article  CAS  Google Scholar 

  117. Pan S, Jin K, Wang T, Zhang Z, Zheng L, Umehara N. Metal matrix nanocomposites in tribology: manufacturing, performance, and mechanisms. Friction. 2022. https://doi.org/10.1007/s40544-021-0572-7.

    Article  Google Scholar 

  118. Rieth M, Dafferner B. Limitations of W and W–1%La2O3 for use as structural materials. J Nucl Mater. 2005;342(1):20.

    Article  CAS  Google Scholar 

  119. Xie Z, Liu R, Miao S, Yang X, Zhang T, Wang X, Fang Q, Liu C, Luo G, Lian Y, Liu X. Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature. Sci Rep. 2015;5(1):16014.

    Article  CAS  Google Scholar 

  120. Deng H, Xie Z, Wang Y, Liu R, Zhang T, Hao T, Wang X, Fang Q, Liu C. Mechanical properties and thermal stability of pure W and W-0.5wt% ZrC alloy manufactured with the same technology. Mater Sci Eng A. 2018;715:117.

    Article  CAS  Google Scholar 

  121. Chen J, Zhao C, Li K, Li M, Sun S, Zhang S, Ma J, Liu W. Effect of TaC addition on microstructure and microhardness of additively manufactured tungsten. J Alloy Compd. 2022;897: 162978.

    Article  CAS  Google Scholar 

  122. Lang S, Sun N, Cao J, Yu W, Yang Z, Hou S. Fabrication of ultra-fine-grained W-TiC alloys by a simple ball-milling and hydrogen reduction method. Materials. 2021;14(19):5865.

    Article  CAS  Google Scholar 

  123. Gu D, Dai D, Chen W, Chen H. Selective laser melting additive manufacturing of hard-to-process tungsten-based alloy parts with novel crystalline growth morphology and enhanced performance. J Manuf Sci Eng. 2016;138(8): 081003.

    Article  Google Scholar 

  124. Hu Z, Zhao Y, Guan K, Wang Z, Ma Z. Pure tungsten and oxide dispersion strengthened tungsten manufactured by selective laser melting: microstructure and cracking mechanism. Addit Manuf. 2020;36: 101579.

    CAS  Google Scholar 

  125. Hu W, Dong Z, Wang H, Ahamad T, Ma Z. Microstructure refinement and mechanical properties improvement in the W-Y2O3 alloys via optimized freeze-drying. Int J Refract Metal Hard Mater. 2021;95: 105453.

    Article  CAS  Google Scholar 

  126. Chen L, Xu J, Choi H, Pozuelo M, Ma X, Bhowmick S, Yang J, Mathaudhu S, Li X. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature. 2015;528(7583):539.

    Article  CAS  Google Scholar 

  127. Jiang Q, Cao C, Lin T, Wu S, Li X. Strong and tough glass with self-dispersed nanoparticles via solidification. Adv Mater. 2019;31(33):1901803.

    Article  Google Scholar 

  128. Sokoluk M, Yuan J, Pan S, Li X. Nanoparticles enabled mechanism for hot cracking elimination in aluminum alloys. Metall Mater Trans A. 2021;52(7):3083.

    Article  CAS  Google Scholar 

  129. Yuan J, Yao G, Pan S, Murali N, Li X. Size control of in situ synthesized TiB2 particles in molten aluminum. Metall Mater Trans A. 2021;52(6):2657.

    Article  CAS  Google Scholar 

  130. Maleki E, Bagherifard S, Guagliano M. Application of artificial intelligence to optimize the process parameters effects on tensile properties of Ti–6Al–4V fabricated by laser powder-bed fusion. Int J Mech Mater Des. 2021;18(1):199.

    Article  Google Scholar 

  131. Wang C, Tan X, Tor S, Lim C. Machine learning in additive manufacturing: state-of-the-art and perspectives. Addit Manuf. 2020;36: 101538.

    Google Scholar 

  132. Zhu Q, Liu Z, Yan J. Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks. Comput Mech. 2021;67(2):619.

    Article  Google Scholar 

  133. Payal H, Maheshwari S, Bharti P, Sharma S. Multi-objective optimisation of electrical discharge machining for inconel 825 using Taguchi-fuzzy approach. Int j inf tecnol. 2019;11(1):97.

    Article  Google Scholar 

  134. Kumar S, Batish A, Singh R, Singh T. A hybrid Taguchi-artificial neural network approach to predict surface roughness during electric discharge machining of titanium alloys. J Mech Sci Technol. 2014;28(7):2831.

    Article  Google Scholar 

  135. Radhwan H, Shayfull Z, Farizuan M, Effendi M, Irfan A. Optimization parameter effects on the quality surface finish of the three-dimensional printing (3D-printing) fused deposition modeling (FDM) using RSM. AIP Conf Proc. 2019;2129(1): 020155.

    Article  Google Scholar 

  136. Pradhan M. Estimating the effect of process parameters on MRR, TWR and radial overcut of EDMed AISI D2 tool steel by RSM and GRA coupled with PCA. Int J Adv Manuf Technol. 2013;68(1):591.

    Article  Google Scholar 

  137. Lee J, Yamashita S, Ogura T, Saida K. Suppression of solidification cracking via thermal strain control in multi-beam welding. Mater Today Commun. 2020;24: 101094.

    Article  CAS  Google Scholar 

  138. Hu Y, Ning F, Cong W, Li Y, Wang X, Wang H. Ultrasonic vibration-assisted laser engineering net shaping of ZrO2–Al2O3 bulk parts: effects on crack suppression, microstructure, and mechanical properties. Ceram Int. 2018;44(3):2752.

    Article  CAS  Google Scholar 

  139. Li Y, Zhang D, Wang H, Cong W. Fabrication of a TiC-Ti matrix composite coating using ultrasonic vibration-assisted laser directed energy deposition: the effects of ultrasonic vibration and TiC content. Metals. 2021;11(5):693.

    Article  CAS  Google Scholar 

  140. Cong W, Ning F. A fundamental investigation on ultrasonic vibration-assisted laser engineered net shaping of stainless steel. Int J Mach Tools Manuf. 2017;121:61.

    Article  Google Scholar 

  141. Yao G, Pan S, Yuan J, Guan Z, Li X. A novel process for manufacturing copper with size-controlled in-situ tungsten nanoparticles by casting. J Mater Process Technol. 2021;296:117187.

    Article  CAS  Google Scholar 

  142. Pan S, Zhang Z. Fundamental theories and basic principles of triboelectric effect: a review. Friction. 2018;7(1):2.

    Article  Google Scholar 

  143. Pan S, Wang T, Jin K, Cai X. Understanding and designing metal matrix nanocomposites with high electrical conductivity: a review. J Mater Sci. 2022;57:6487.

    Article  CAS  Google Scholar 

  144. Mercado Rojas J, Wolfe T, Fleck B, Qureshi A. Plasma transferred arc additive manufacturing of nickel metal matrix composites. Manuf Lett. 2018;18:31.

    Article  Google Scholar 

  145. Choudhury S, Marya S, Amirthalingam M. Improving arc stability during wire arc additive manufacturing of thin-walled titanium components. J Manuf Process. 2021;66:53.

    Article  Google Scholar 

  146. Rosli N, Alkahari M, Abdollah M, Maidin S, Ramli F, Herawan S. Review on effect of heat input for wire arc additive manufacturing process. J Market Res. 2021;11:2127.

    Google Scholar 

  147. Ren B, Chen C, Zhang M. Effect of heat treatment on the microstructure of Co–Cr–W alloy fabricated by laser additive manufacturing. OE. 2018;57(4):041409.

    Article  Google Scholar 

  148. Chen J, Li K, Wang Y, Xing L, Yu C, Liu H, Ma J, Liu W, Shen Z. The effect of hot isostatic pressing on thermal conductivity of additively manufactured pure tungsten. Int J Refract Metal Hard Mater. 2020;87: 105135.

    Article  CAS  Google Scholar 

  149. Vrancken B, King W, Matthews M. In-situ characterization of tungsten microcracking in selective laser melting. Procedia CIRP. 2018;74:107.

    Article  Google Scholar 

  150. Shi M, Xiong J, Zhang G, Zheng S. Monitoring process stability in GTA additive manufacturing based on vision sensing of arc length. Measurement. 2021;185: 110001.

    Article  Google Scholar 

  151. Yasa E, Deckers J, Kruth J, Rombouts M, Luyten J. Charpy impact testing of metallic selective laser melting parts. Virtual Phys Prototyp. 2010;5(2):89.

    Article  Google Scholar 

  152. Lang S, Yan Q, Sun N, Zhang X, Deng L, Wang Y, Ge C. Microstructure, basic thermal-mechanical and Charpy impact properties of W-0.1 wt.% TiC alloy via chemical method. J Alloy Compd. 2016;660:184.

    Article  CAS  Google Scholar 

  153. Ren C, Fang Z, Koopman M, Butler B, Paramore J, Middlemas S. Methods for improving ductility of tungsten—a review. Int J Refract Metal Hard Mater. 2018;75:170.

    Article  CAS  Google Scholar 

  154. Stephens J. Dislocation structures in single-crystal tungsten and tungsten alloys. Metall Mater Trans B. 1970;1(5):1293.

    Article  CAS  Google Scholar 

  155. Leonhardt T. Properties of tungsten-rhenium and tungsten-rhenium with hafnium carbide. JOM. 2009;61(7):68.

    Article  CAS  Google Scholar 

  156. Luo A, Jacobson D, Shin K. Solution softening mechanism of iridium and rhenium in tungsten at room temperature. Int J Refract Metal Hard Mater. 1991;10(2):107.

    Article  CAS  Google Scholar 

  157. Wang Y, Xie Z, Wang M, Deng H, Yang J, Jiang Y, Zhang T, Wang X, Fang Q, Liu C. The superior thermal stability and tensile properties of hot rolled W-HfC alloys. Int J Refract Metal Hard Mater. 2019;81:42.

    Article  CAS  Google Scholar 

  158. Li P, Li S, Wang Z, Zhang Z. Fundamental factors on formation mechanism of dislocation arrangements in cyclically deformed FCC single crystals. Prog Mater Sci. 2011;56(3):328.

    Article  CAS  Google Scholar 

  159. Feltner C, Laird C. Cyclic stress-strain response of F.C.C. metals and alloys—I phenomenological experiments. Acta Metall. 1967;15(10):1621.

    Article  CAS  Google Scholar 

  160. Feltner C, Laird C. Cyclic stress-strain response of F.C.C. metals and alloys—II dislocation structures and mechanisms. Acta Metall. 1967;15(10):1633.

    Article  CAS  Google Scholar 

  161. Lukáš P, Klesnil M. Dislocation structures in fatigued single crystals of Cu–Zn system. Phys Status Solidi (A). 1971;5(1):247.

    Article  Google Scholar 

  162. Haasen P, Gerold V, Kostorz G. Strength of metals and alloys. In: Proceedings of the 5th international conference, Aachen, Federal Republic of Germany. 1st ed. Aachen: Pergamon Press, 1979

  163. Steffens T, Schwink C, Korner A, Karnthaler H. Transmission electron microscopy study of the stacking-fault energy and dislocation structure in CuMn alloys. Philos Mag A. 1987;56(2):161.

    Article  CAS  Google Scholar 

  164. Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui X, Wu Y, Gault B, Kontis P, Raabe D, Gu L, Zhang Q, Chen H, Wang H, Liu J, An K, Zeng Q, Nieh T, Lu Z. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature. 2018;563(7732):546.

    Article  CAS  Google Scholar 

  165. Wu Y, Zhang F, Yuan X, Huang H, Wen X, Wang Y, Zhang M, Wu H, Liu X, Wang H, Jiang S, Lu Z. Short-range ordering and its effects on mechanical properties of high-entropy alloys. J Mater Sci Technol. 2021;62:214.

    Article  CAS  Google Scholar 

  166. Nasser A, Kassem M, Elsayed A, Gepreel M, Moniem A. Influence of grain refinement on microstructure and mechanical properties of tungsten carbide/zirconia nanocomposites. J Mater Eng Perform. 2016;25(11):5065.

    Article  CAS  Google Scholar 

  167. Li X, Zhang L, Dong Y, Qin M, Wei Z, Que Z, Yang J, Qu X, Li J. Towards pressureless sintering of nanocrystalline tungsten. Acta Mater. 2021;220: 117344.

    Article  CAS  Google Scholar 

  168. Xie Z, Liu R, Zhang T, Fang Q, Liu C, Liu X, Luo G. Achieving high strength/ductility in bulk W-Zr-y2o3 alloy plate with hybrid microstructure. Mater Des. 2016;107:144.

    Article  CAS  Google Scholar 

  169. Dong Z, Liu N, Ma Z, Liu C, Guo Q, Alothman Z, Yamauchi Y, Shahriar A, Hossain M, Liu Y. Microstructure refinement in W-Y2O3 alloy fabricated by wet chemical method with surfactant addition and subsequent spark plasma sintering. Sci Rep. 2017;7(1):6051.

    Article  Google Scholar 

  170. Chen Y, Wu Y, Yu F, Chen J. Microstructure and mechanical properties of tungsten composites Co-strengthened by dispersed TiC and La2O3 particles. Int J Refract Metal Hard Mater. 2008;26(6):525.

    Article  CAS  Google Scholar 

  171. Hu W, Dong Z, Yu L, Ma Z, Liu Y. Synthesis of W-Y2O3 alloys by freeze-drying and subsequent low temperature sintering: microstructure refinement and second phase particles regulation. J Mater Sci Technol. 2020;36:84.

    Article  CAS  Google Scholar 

  172. Xie Z, Liu R, Fang Q, Zhang T, Jiang Y, Wang X, Liu C. Microstructure and mechanical properties of nano-size zirconium carbide dispersion strengthened tungsten alloys fabricated by spark plasma sintering method. Plasma Sci Technol. 2015;17(12):1066.

    Article  CAS  Google Scholar 

  173. Xie Z, Liu R, Miao S, Zhang T, Wang X, Fang Q, Liu C, Luo G. Effect of high temperature swaging and annealing on the mechanical properties and thermal conductivity of W-Y2O3. J Nucl Mater. 2015;464:193.

    Article  CAS  Google Scholar 

  174. Simonelli M, Tse Y, Tuck C. On the texture formation of selective laser melted Ti-6Al-4V. Metall Mater Trans A. 2014;45(6):2863.

    Article  CAS  Google Scholar 

  175. Kruth J, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B. Selective laser melting of iron-based powder. J Mater Process Technol. 2004;149(1):616.

    Article  CAS  Google Scholar 

  176. Farshidianfar M, Khajepour A, Gerlich A. Effect of real-time cooling rate on microstructure in laser additive manufacturing. J Mater Process Technol. 2016;231:468.

    Article  CAS  Google Scholar 

  177. Zhang K, Wang S, Liu W, Shang X. Characterization of stainless steel parts by laser metal deposition shaping. Mater Des. 2014;55:104.

    Article  CAS  Google Scholar 

  178. Murr L, Martinez E, Gaytan S, Ramirez D, Machado B, Shindo P, Martinez J, Medina F, Wooten J, Ciscel D, Ackelid U, Wicker R. Microstructural architecture, microstructures, and mechanical properties for a nickel-base superalloy fabricated by electron beam melting. Metall Mater Trans A. 2011;42(11):3491.

    Article  CAS  Google Scholar 

  179. Xie X, Xie Z, Liu R, Fang Q, Liu C, Han W, Wu X. Hierarchical microstructures enabled excellent low-temperature strength-ductility synergy in bulk pure tungsten. Acta Mater. 2022;228: 117765.

    Article  CAS  Google Scholar 

  180. Gong X, Chou K. Phase-field modeling of microstructure evolution in electron beam additive manufacturing. JOM. 2015;67(5):1176.

    Article  CAS  Google Scholar 

  181. Zinoviev A, Zinovieva O, Ploshikhin V, Romanova V, Balokhonov R. Evolution of Grain Structure during Laser Additive Manufacturing. Simulation by a Cellular Automata Method. Materials & Design. 2016;106:321.

    Article  Google Scholar 

  182. Rodgers T, Madison J, Tikare V. Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo. Comput Mater Sci. 2017;135:78.

    Article  Google Scholar 

  183. Cui Y, Li K, Wang C, Liu W. Dislocation evolution during additive manufacturing of tungsten. Model Simul Mater Sci Eng. 2021;30(2):024001.

    Article  Google Scholar 

  184. Curzadd B, Müller A, Neu R, von Toussaint U. Topology optimization of tungsten/copper structures for plasma-facing component applications. Nucl Fusion. 2019;59(8): 086003.

    Article  CAS  Google Scholar 

  185. Pirouzfam N, Sendur K. Tungsten based spectrally selective absorbers with anisotropic rough surface texture. Nanomaterials. 2021;11(8):2018.

    Article  CAS  Google Scholar 

  186. Zhou K, Chen W, Yang Y, Li R, Dong L, Fu Y. Microstructure and mechanical behavior of porous tungsten skeletons synthesized by selected laser melting. Int J Refract Metal Hard Mater. 2022;103: 105769.

    Article  CAS  Google Scholar 

  187. Moorehead M, Bertsch K, Niezgoda M, Parkin C, Elbakhshwan M, Sridharan K, Zhang C, Thoma D, Couet A. High-throughput synthesis of Mo–Nb–Ta–W high-entropy alloys via additive manufacturing. Mater Des. 2020;187: 108358.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuai-Hang Pan or Yi-Nan Cui.

Ethics declarations

Conflict of interest

The authors state no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, SH., Yao, GC., Cui, YN. et al. Additive manufacturing of tungsten, tungsten-based alloys, and tungsten matrix composites. Tungsten 5, 1–31 (2023). https://doi.org/10.1007/s42864-022-00153-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-022-00153-6

Keywords

Navigation