Skip to main content
Log in

Porosity formation and gas bubble retention in laser metal deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

One of the inherent problems associated with laser metal deposition using gas-assisted powder transfer is the formation of porosity, which can be detrimental to the mechanical properties of the bulk material. In this work, a comprehensive investigation of porosity is carried out using gas atomised Inconel 718 powder. In the analysis, a clear distinction is made between two types of porosity; namely lack of fusion and gas porosity. The results show that the two types of porosity are attributed by different factors. The gas porosity, which is more difficult to eliminate than the lack of fusion, can be as high as 0.7%. The study shows that the gas porosity is dependent on the process parameters and the melt pool dynamics. The flotation of entrapped gas bubbles was analysed, showing that in a stationary melt pool the gas would be retained by Marangoni-driven flow. The overall Marangoni-driven flow of the melt pool is in the order of five times higher than the flotation effect, and this is the reason why the melt pool geometry would tend to dominate the flow direction of the gas bubbles. Through optimisation, the gas porosity can be reduced to 0.037%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Li, J. Mater. Sci. 41, 7886 (2006)

    Article  ADS  Google Scholar 

  2. P.A. Kobryn, E.H. Moore, S.L. Semiatin, Scr. Mater. 43, 299 (2000)

    Article  Google Scholar 

  3. R.H. Morgan, A.J. Papworth, C. Sutcliffe, P. Fox, W. O’Neill, J. Mater. Sci. 37, 3093 (2002)

    Article  Google Scholar 

  4. P.A. Kobryn, S.L. Semiatin, J. Mater. Process. Technol. 135, 330 (2003)

    Article  Google Scholar 

  5. X.H. Wu, J. Liang, J.F. Mei, C. Mitchell, P.S. Goodwin, W. Voice, Mater. Des. 25, 137 (2004)

    Google Scholar 

  6. J. Mazumder, D. Dutta, N. Kikuchi, A. Ghosh, Opt. Lasers Eng. 34, 397 (2000)

    Article  Google Scholar 

  7. J. Choi, Y. Chang, Int. J. Mach. Tools Manuf. 45, 597 (2005)

    Article  Google Scholar 

  8. P.L. Blackwell, A. Wisbey, J. Mater. Process. Technol. 170, 268 (2005)

    Article  Google Scholar 

  9. L.J. Li, J. Mater. Sci. 41, 7886 (2006)

    Article  ADS  Google Scholar 

  10. S. Sun, M. Brandt, J. Harris, Y. Durandet, Surf. Coat. Technol. 201, 998 (2006)

    Article  Google Scholar 

  11. J. Choi, Y. Hua, J. Laser Appl. 4, 245 (2004)

    Article  ADS  Google Scholar 

  12. V.E. Beal, P. Erasenthiran, N. Hopkinson, P. Dickens, C.H. Ahrens, J. Mater. Process. Technol. 174, 145 (2006)

    Article  Google Scholar 

  13. H. Qi, J. Mazumder, J. Laser Appl. 3, 136 (2005)

    Article  Google Scholar 

  14. X. Zhao, J. Chen, X. Lin, W. Huang, Mater. Sci. Eng. A 478, 119 (2008)

    Article  Google Scholar 

  15. J. Mazumder, Opt. Eng. 8, 1208 (1991)

    Article  ADS  Google Scholar 

  16. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena (Wiley, New York, 1960)

    Google Scholar 

  17. A. Bergman, H. Fredriksson, H. Shahani, J. Mater. Sci. 23, 1573 (1988)

    Article  ADS  Google Scholar 

  18. T. Ida, R.I.L. Guthrie, The Physical Properties of Liquid Metals (Clarendon, Oxford, 1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. L. Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, G.K.L., Jarfors, A.E.W., Bi, G. et al. Porosity formation and gas bubble retention in laser metal deposition. Appl. Phys. A 97, 641–649 (2009). https://doi.org/10.1007/s00339-009-5266-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5266-3

PACS

Navigation