Skip to main content
Log in

Kinetics of Initial Coarsening During Sintering of Nanosized Powders

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Grain growth during sintering is a critical issue for the manufacture of nanocrystalline bulk materials from nanosized powders. The grain growth process during sintering can be viewed as consisting of two parts: initial coarsening during early and intermediate stages of sintering and latter stage grain growth during the final stage of sintering. The latter stage grain growth is the normal grain growth that has been well studied and reported in the literature. The initial coarsening, which often inevitably causes a material to lose nanoscaled grain size characteristics, however, is not well studied at all. In this investigation, the initial coarsening during sintering of nanosized powders was studied by both nonisothermal and isothermal experimental techniques using tungsten as an example material. The results show that the initial coarsening during the heat-up process of a sintering cycle is sufficient to increase the grain size beyond the nanoscale. The kinetics of initial coarsening is found to be linear rather than polynomial, as predicted by the conventional power law of grain growth. The analysis of activation energies showed that surface diffusion is the primary mechanism for interparticle mass transport during the initial coarsening. The linear kinetic behavior could be attributed to the pinning of grain boundaries by surface grooves and high concentration of defects as the result of the synthesis of nanosized powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.R. Malow and C.C. Koch: Acta Mater., 1997, vol. 45, pp. 2177–86.

    Article  CAS  Google Scholar 

  2. Z. Fang, P. Maheshwari, X. Wang, H.Y. Sohn, A. Griffo, and R. Riley: Int. J. Refract. Met. Hard Mater., 2005, vol. 23, pp. 249–57.

    Article  CAS  Google Scholar 

  3. Z.J. Shen, H. Peng, J. Liu, and M. Nygren: J. Eur. Ceram. Soc., 2004, vol. 24, pp. 3447–52.

    Article  CAS  Google Scholar 

  4. S. Okuda, M. Kobiyama, T. Inami, and S. Takamura: Scripta Mater., 2001, vol. 44, pp. 2009–12.

    Article  CAS  Google Scholar 

  5. D.J. Chen and M.J. Mayo: Nanostruct. Mater., 1993, vol. 2, pp. 469–78.

    Article  CAS  Google Scholar 

  6. W. Dickenscheid, R. Birringer, H. Gleiter, O. Kanert, B. Michel, and B. Guenther: Solid State Commun., 1991, vol. 79, pp. 683–86.

    Article  CAS  Google Scholar 

  7. G. Hibbard, K.T. Aust, G. Palumbo, and U. Erb: Scripta Mater., 2001, vol. 44, pp. 513–18.

    Article  CAS  Google Scholar 

  8. R. Klemm, E . Thiele, C. Holste, J. Eckert, and N. Schell: Scripta Mater., 2002, vol. 46, pp. 685–90.

    Article  CAS  Google Scholar 

  9. F. Zhou, J. Lee, and E.J. Lavernia: Scripta Mater., 2001, vol. 44, pp. 2013–17.

    Article  CAS  Google Scholar 

  10. Z.Z. Fang and H. Wang: Int. Mater. Rev., 2008, vol. 53, pp. 326–52.

    Article  CAS  Google Scholar 

  11. D.M. Owen and A.H. Chokshi: Nanostruct. Mater., 1993, vol. 2, pp. 181–87.

    Article  CAS  Google Scholar 

  12. R.S. Averback: Z. Phys. D Atom Mol. Cl., 1993, vol. 26, pp. 84–88.

    Article  CAS  Google Scholar 

  13. J.G. Li and Y.P. Ye: J. Am. Ceram. Soc., 2006, vol. 89, pp. 139–43.

    Article  CAS  Google Scholar 

  14. R. Vassen: CFI-Ceram. Forum Int., 1999, vol. 76, pp. 19–22.

    CAS  Google Scholar 

  15. I.W. Chen and X.H. Wang: Nature, 2000, vol. 404, pp. 168–71.

    Article  CAS  Google Scholar 

  16. M.N. Rahaman: Sintering of Ceramics, CRC Press, New York, NY, 2007, pp. 152–56.

    Google Scholar 

  17. C. Greskovich and K.W. Lay: J. Am. Ceram. Soc., 1972, vol. 55, pp. 142–46.

    Article  CAS  Google Scholar 

  18. F.F. Lange and B.J. Kellett: J. Am. Ceram. Soc., 1989, vol. 72, pp. 735–41.

    Article  CAS  Google Scholar 

  19. F. Wakai, M. Yoshida, Y. Shinoda, and T. Akatsu: Acta Mater., 2005, vol. 53, pp. 1361–71.

    Article  CAS  Google Scholar 

  20. H.N. Ch’ng and J. Pan: Acta Mater., 2007, vol. 55, pp. 813–24.

    Article  Google Scholar 

  21. J.L. Shi and T.S. Yen: J. Eur. Ceram. Soc., 1994, vol. 14, pp. 505–10.

    Article  CAS  Google Scholar 

  22. J. Cai and R. Liu: J. Therm. Anal. Calorim., 2008, vol. 94, pp. 313–16.

    Article  CAS  Google Scholar 

  23. J. Farjas and P. Roura: AIChE J., 2008, vol. 54, pp. 2145–54.

    Article  CAS  Google Scholar 

  24. J.H. Flynn: Thermochim. Acta, 1997, vol. 300, pp. 83–92.

    Article  CAS  Google Scholar 

  25. J. Cai, F. Yao, W. Yi, and F. He: AIChE J., 2006, vol. 52, pp. 1554–57.

    Article  CAS  Google Scholar 

  26. C. Popescu and E. Segal: Int. J. Chem. Kinet., 1998, vol. 30, pp. 313–27.

    Article  CAS  Google Scholar 

  27. J.J.M. Orfao: AIChE J., 2007, vol. 53, pp. 2905–15.

    Article  CAS  Google Scholar 

  28. E.J. Mittemeijer: J. Mater. Sci., 1992, vol. 27, pp. 3977–87.

    Article  CAS  Google Scholar 

  29. L.C. Chen: Int. J. Refract. Met. Hard Mater., 1993, vol. 12, pp. 41–51.

    Article  Google Scholar 

  30. R.J. Brook: in Treatise on Materials Science and Technology 9, F.F.Y. Wang, ed., Academic Press, New York, NY, 1976, pp. 331–64.

  31. Y. Estrin, G. Gottstein, E. Rabkin, and L.S. Shvindlerman: Scripta Mater., 2000, vol. 43, pp. 141–47.

    Article  CAS  Google Scholar 

  32. Y. Estrin, G. Gottstein, and L.S. Shvindlerman: Scripta Mater., 1999, vol. 41, pp. 385–90.

    Article  CAS  Google Scholar 

  33. Y. Estrin, G. Gottstein, and L.S. Shvindlerman: Acta Mater., 1999, vol. 47, pp. 3541–49.

    Article  CAS  Google Scholar 

  34. C.E. Krill III, L. Helfen, D. Michels, H. Natter, A. Fitch, O. Masson, and R. Birringer: Phys. Rev. Lett., 2001, vol. 86, pp. 842–45.

  35. G. Gottstein, Y. Ma, and L.S. Shvindlerman: Acta Mater., 2005, vol. 53, pp. 1535–44.

    Article  CAS  Google Scholar 

  36. G. Gottstein and L.S. Shvindlerman: Scripta Mater., 2006, vol. 54, pp. 1065–70.

    Article  CAS  Google Scholar 

  37. L. Zhou, H. Zhang, and D.J. Srolovitz: Acta Mater., 2005, vol. 53, pp. 5273–79.

    Article  CAS  Google Scholar 

  38. D. Farkas, S. Mohanty, and J. Monk: Phys. Rev. Lett., 2007, vol. 98, p. 165502.

    Article  Google Scholar 

  39. L. Klinger, E. Rabkin, L.S. Shvindlerman, and G. Gottstein: J. Mater. Sci., 2008, vol. 43, pp. 5068–75.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zak Fang.

Additional information

Manuscript submitted October 29, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Zak Fang, Z. & Hwang, K.S. Kinetics of Initial Coarsening During Sintering of Nanosized Powders. Metall Mater Trans A 42, 3534–3542 (2011). https://doi.org/10.1007/s11661-011-0751-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0751-7

Keywords

Navigation